Saving Rates and Poverty: The Role of Conspicuous Consumption and Human Capital

Omer Moav† Zvika Neeman‡

May 25, 2010

Abstract
Poor families around the world spend a large fraction of their income consuming goods that do not appear to alleviate poverty, while saving at low rates. We suggest that individuals care about economic status and hence we interpret this behavior as conspicuous consumption that is intended to provide a signal about unobserved income. We show that if human capital is observable and provides some information about income, a signaling equilibrium can emerge in which expected expenditure on conspicuous consumption as a fraction of total income is decreasing with income. This equilibrium results in an increasing marginal propensity to save that might generate a poverty trap.

Keywords: Conspicuous Consumption, Human Capital, Poverty, Status, Saving.
JEL Classification Numbers: D91, O11, O12, O15.
1 Introduction

The consumption bundle of the poor includes many goods that do not appear to alleviate poverty or its consequences. For example, according to Banerjee and Duflo (2007) the median spending on festivals, which varies substantially across countries, is as high as 10 percent of annual income in some regions of India. Similarly Case et al. (2008) show that households in South Africa spend on average the equivalent of a year’s income for an adult’s funeral that is financed, in many cases, by borrowing. ¹

These consumption patterns are puzzling because they seem to come at a significant cost for the poor: the typical poor spend only 2-3 percent of their income on their children’s education, do not eat well, experience ill health, and report that they are worried and anxious to an extent that interferes with their sleep and work. In many cases, they fail to make trivial investments in their business and save so little that they cannot avoid cutting back on meals when they suffer a temporary decline in income (Banerjee and Duflo, 2007).

This pattern of consumption and saving is consistent with the empirical finding that saving rates are increasing with permanent income (Dynan et al., 2004) but is hard to reconcile with the predictions of the standard life cycle/permanent income model with homothetic preferences. The literature that considers this question has focused on non homothetic preferences (e.g., bequest as a luxury good or subsistence consumption), differences in time preference rates, and hyperbolic discounting as possible explanations for this pattern (see Section 2.1 below for more details).

In this paper, we offer an alternative reason why saving rates may be increasing in income. We propose that individuals care about their economic status and try to signal their income to others by engaging in conspicuous consumption.² Our explanation can shed light on

¹Rao (2001a, 2001b) argues that expenditures on festivals amounts to 15 percent of households’ total expenditures in rural India. Interestingly, the poor typically spend less than one percent of their income on other types of entertainment that are common in high-income countries, such as movies, theater, and video shows (Banerjee and Duflo, 2007).

²This is notwithstanding the possibility that these consumption patterns can generate social capital and possibly also future income. Some other forms of conspicuous consumption, such as jewelry, can also help
the persistence of poverty and is consistent with the behavior of the poor that is described above. In particular, we suggest that those with high human capital have a recognizable ability (professional titles, degree certificates etc.) and relatively little need to signal success, whereas those without certified accomplishments, such as the poor and the "newly rich", have a relatively stronger motivation to impress via conspicuous consumption. As a result, the fraction of income allocated to conspicuous consumption declines, on average, with the level of human capital, and a larger share of income is allocated to savings and investment in education.

The importance of conspicuous spending to signal status is convincingly illustrated in a New York Times article ("For India’s Newly Rich Farmers, Limos Won’t Do"), where it was reported that a newly rich farmer who sold land for a windfall of about $109,000, rented a helicopter for $8,327 to transport his son to his wedding two miles away. The son wore a wreath around his neck, made of 100 rupee notes. The claim in the article, supported by statements from family members and experts, is that the intention is to impress other villagers with the family’s new status and spending power.

Public awareness of the ruinous impact of conspicuous consumption on the lives of the poor is reflected in a recent Tajikistani government policy. According to a report on National Public Radio, Tajikistan’s President, Imomali Rahmon, banned gold teeth, the use of cell phones in universities and big birthday parties. Radio Free Europe reported that the President criticized wealthy citizens “for ‘showing off their wealth’ by throwing elaborate parties and thereby setting a standard for others who try to appear wealthy by holding a large party despite having only modest incomes.” The President restricted the number of people and amount of food served at weddings to prevent Tajiks, 60 percent of whom live

below the poverty line, from “using their life savings just to compete with their neighbors”.5

Conspicuous consumption is nearly universal in human societies, and not only in them (see, e.g., Pinker 1997). The argument among evolutionary biologists, following the seminal contribution of Zahavi (1975), is that higher status, or more precisely the costly signal that generates this status, such as the peacock’s tail, is positively correlated with other desirable genetic characteristics that are associated with greater fitness. Hence, a higher status increases mating opportunities and so confers an evolutionary advantage.6

In this paper we develop an overlapping generations model in which individuals’ preferences are defined over their consumption, investment in their offspring’s human capital, and status. An individual’s status is defined by the social beliefs about his or her unobservable income. Individuals’ incomes are unobservable, but are correlated with the observable human capital. We show the existence of a unique fully separating equilibrium where an individual’s conspicuous consumption serves as a signal about his or her income. In this equilibrium, it is possible to infer the exact income of each individual based on the individual’s level of human capital and expenditure on conspicuous consumption. The model also admits a pooling equilibrium with no conspicuous consumption, and a wide variety of partially separating equilibria. However, the fully separating equilibrium is the only equilibrium that satisfies a version of the intuitive criterion (Cho and Kreps, 1987), which is the standard refinement that is applied to equilibria in signaling games.

Our model provides a simple illustration that despite homothetic preferences, a signaling equilibrium could give rise to an increasing saving rate with income and thereby to a poverty trap. We do not claim that this is always the case: in fact we show that some as-

6 Experiments illustrate that sexual motives induce conspicuous behavior among humans as well. Griskevičius et al. (2007), for example, show that romantic motives seem to produce highly strategic and sex-specific conspicuous displays of consumption and benevolence, where men tend to spend more on conspicuous consumption compared to women. Similarly, Wilson and Daly (2004), show that men respond more strongly than women to romantic situations, by willing to discount future income for present consumption. De Fraja (2009), based on sexual selection, provides a theoretical foundation for including status in the utility function.
sumptions regarding the distribution of income as a function of human capital are required. We believe, however, that we highlight a potentially important and plausible mechanism for understanding saving rates and the behavior of the poor that has not yet been addressed in the literature. We further argue that the result is intuitive and alternative models could generate the same result. For example, there could be a neighborhood effect such that wealthier families, or rather those with higher levels of education, live in areas in which the return to education is higher and hence they spend less on conspicuous consumption, in comparison to those with low levels of human capital who live in poor neighborhoods with lower return to education. As a result those who live in poor neighborhoods spend more on conspicuous consumption, leading to persistent inequality.

Similarly, while here we model income as a continuous function of human capital, an alternative model in which individuals with human capital above some threshold are employed by firms and below are self-employed is a natural alternative. A reasonable assumption could be that being self-employed implies a larger variance in income, and a lower correlation between human capital and income, leading to more conspicuous spending and persistence of poverty.

In the model developed in this paper, if human capital is non-observable, homothetic preferences lead to a constant fraction of income being allocated to conspicuous consumption, which gives rise to a constant saving rate (in the form of investment in the education of offspring). If, however, human capital is observable, the fully separating equilibrium implies a negative association between income and the share of conspicuous consumption out of total income. Consequently, the saving rate is increasing with income. Hence, we demonstrate that the trade-off between observable human capital and conspicuous consumption as signals of income may play a crucial role in explaining saving patterns and the persistence of poverty.

Obviously, investment in the health and the education of one’s children may also serve as a signal about wealth. Therefore it is puzzling that parents allocate a significant fraction of income to conspicuous consumption while neglecting to invest in the human capital of their
children. Perhaps the reason is that, unlike conspicuous consumption, the fruits of such an investment are typically only observable in the long run, which delays the satisfaction that is obtained from impressing others. Moreover, a private school is typically not an option for the poor whereas other forms of educational support, such as home tutoring, are not as observable.\footnote{In addition, a “purely wasteful signal” that doesn’t generate direct utility or allows for accumulation of wealth provides a stronger indication for unobserved income. See Milgrom and Roberts (1986) in the context of advertising signals for a similar argument.}

According to the theory proposed here, festivals, consumption of tobacco and alcohol in the public domain,\footnote{Thorstein Veblen, who coined the phrase conspicuous consumption, used alcohol (and other stimulants) as prime examples of conspicuous consumption that serves as a signal for the superior status of those who are able to afford the associated indulgence (Veblen, 1899).} and the display of expensive clothing and jewelry, are more transparent than other types of consumption, and hence may provide a signal for income or wealth.\footnote{The consumption of flashy jewelry worn especially as an indication of wealth, known as “bling” among young African Americans, is another example of conspicuous consumption that could come with a significant cost in terms of persistence of poverty. We are not aware of any study that documents the consumption of bling and its impact on poverty, however, Missy Elliott, a successful rapper, argued in 2004 that ‘bling culture’ encourages young black men and women to spend their money irresponsibly, and that artists should encourage young people to invest in stable, long-term assets (wikipedia).} Of course, one could offer alternative, or complementary, explanations for these consumption patterns. For instance, there is a social norm of lavish spending on festivals; however, the existence of this norm only means that failing to follow the norm issues a strong signal about one’s financial situation. Moreover, the claim that festivals serve as signals of unobserved wealth is supported by Bloch, Rao and Desai (2004). They demonstrate, based on survey data from South India, that a daughter’s marriage (dowry and celebrations) is the costliest event in the life of an Indian family and can amount to more than six times a family’s annual income.\footnote{See Botticini and Siow (2000) for a study of the market for dowries.} It often drives parents into severe debt at high interest rates, and may push families into deep poverty.

Bloch et al. (2004) argue that there is a clear distinction between dowries, which may be interpreted as the price paid for desirable grooms (and consist of most of the cost of getting a
daughter married) and wedding celebrations, which have a symbolic value and are intended to create a spectacle.11 Accordingly, they show that expenditure on celebrations, which is customarily borne by the bride’s family, varies significantly and is positively correlated with the "quality" of the groom. Since a wealthier family is most likely to attract a high quality groom, it is reasonable to conclude that there is a positive correlation between unobserved income and spending on celebrations. This spending, according to Bloch et al. (2004), could amount to one third of a family’s annual income.

The idea that there could be tradeoffs between different signals of income is consistent with the findings of Charles, Hurst and Roussanov (2009), who support their claim that race provides a signal of income by showing that the gap between races in spending on visible goods increases with the average wage gap between races, across the United States. Moreover, Charles et al. (2009) show that college educated individuals spend about 13 percent less than their high school educated counterparts on ‘visible goods’, controlling for current and permanent income, which is consistent with the theory we propose here, that human capital and conspicuous consumption are substitutable signals of human capital.

A testable prediction of the model is that providing an external sign on income should reduce conspicuous spending or spending on visible goods. In contrast, most alternative theories, such as a social contract to spend for the benefit of others if one can afford it, will generate the opposite pattern. Therefore, the main prediction that there is a trade-off between a signal of income and visible spending could be tested in a laboratory.

In the next section of this paper we survey the related literature about saving patterns, poverty traps and concern for status. In Section 3 we present the model. Section 4 is devoted to equilibrium analysis, Section 5 to equilibrium dynamics, and Section 6 concludes. All proofs are included in the appendix.

11Srinivas (1989) and Roulet (1996) also emphasize the prestige motive underlying marriage expenses.
2 Related Literature

2.1 Saving Patterns

Economists have long grappled with the question of the effect of wealth on individuals’ saving rates (see the survey in Dynan et al., 2004). Friedman (1957) famously argued that the observation that rich individuals save more is due to the smoothing of consumption and that in fact individuals save a constant fraction of their permanent income. Many studies of this hypothesis followed, some supporting Friedman and some not.

Dynan et al. (2004) provide the most comprehensive empirical study of the question to date. They find that higher lifetime income households save a larger fraction of their permanent income. Dynan et al. consider several theoretical explanations for their finding. They conclude that their finding is inconsistent with the prediction of the standard life cycle model with homothetic preferences, or with explanations that are based on differences in time preference rates, subsistence consumption, or variation in Social Security replacement rates. They mentioned hyperbolic discounting (e.g., Laibson et al., 1998), or differential asset accumulation against out-of-pocket health expenditures late in life (e.g., Smith, 1999) as possible viable explanations. The explanation that is offered here is also consistent with their finding.

2.2 Poverty Traps

There is a sizable literature in economics that tries to explain the persistence of poverty. Most of this literature assumes that individuals are rational and that the poor, like other individuals, care about their own and their offspring’s future well being, and therefore are willing to give up part of their present consumption for the sake of the future. However, as suggested by Dasgupta and Ray (1986), Banerjee and Newman (1993) and Galor and Zeira (1993), credit constraints prevent the poor from passing the threshold of investment that
permits a gradual escape from poverty.12 While the evidence suggests that the poor do indeed have limited access to credit,13 there is little empirical support for the existence of significant investment indivisibilities. Moreover, this approach fails to account for the evidence surveyed above, which suggests that the poor could in fact improve their situation over time if only they saved more and spent less on the consumption of goods we view as conspicuous. It has also been observed that a poverty trap can emerge regardless of non-convexities in the technology if individuals’ propensity to save increases with income, and credit markets are imperfect (Moav, 2002). While empirical evidence supports the underlying assumption that the rate of saving increases with income, and in particular, that the poor’s savings rate is very low, the reason that the poor fail to save and spend their income on festivals, tobacco, and so on, remains unclear.14

The paper that is perhaps closest to ours in its motivation is Banerjee and Mullainathan (2007), who were the first to address the puzzling behavior of the poor described above in a theoretical model. They argue that poor individuals spend a larger fraction of their income on "temptation goods" resulting in a convex saving function in income, which, in turn, can generate a poverty trap. In particular, they show that individuals, who are aware of their limited self control, reduce savings so as to reduce future wasteful consumption, which acts like a tax on their future wealth. Banerjee and Mullainathan’s result is a consequence of their assumption that individuals have non-homothetic preferences that induce a weaker

12In Dasgupta and Ray (1986), the mechanism is based on a nutritional threshold, below which individuals cannot work. See also Benabou (1996), Durlauf (1996), and Mookherjee and Ray (2003) who, among many others, propose different mechanisms that generate poverty traps based on non-convexities in the technology and credit constraints. In many of these models, as well as in Becker and Tomes (1979), Loury (1981), Galor and Tsiddon (1997), Maoz and Moav (1999), and Hassler and Rodriguez-Mora (2000) random shocks allow for some intergenerational mobility. Similarly, in our model individuals may escape poverty if they experience a strong positive shock to income. However, the effect of observable human capital on the equilibrium level of conspicuous consumption reduces the likelihood that this would happen.

13See for example Besley (1995).

14Another puzzle is related to the fact that the poor tend to have many children, which limits their ability to support financially the health and education of each child. Moav (2005) addresses this puzzle and shows that despite homothetic preferences (defined over consumption and the quality and quantity of children) and convex technology, a poverty trap can emerge in this case, as less educated individuals have a comparative advantage in producing child quantity rather than quality.
preference for temptation goods as individuals become richer.15 In contrast, in this paper, individuals’ preferences are homothetic, and the fraction of income spent on conspicuous consumption is endogenously determined in the signaling equilibrium. The key result of the model we present here is that, despite homothetic preferences, this share is decreasing with the level of human capital, thus allowing for the emergence of increasing saving rates and a poverty trap. One could view the two explanations as complementary, as people could be impatient to signal their income via conspicuous consumption.

We further assume that output is a linear function of inputs, so that it is not subject to decreasing marginal productivity. In a model without concern for status, this linear production structure, combined with homothetic preferences, generally results in a linear dynamical system that gives rise to steady-state growth of income, or to a unique globally stable steady-state level of income. We show that the introduction of observable human capital and conspicuous consumption into such a framework may curve the dynamical system in a way that could give rise to a threshold level of income, below which dynasties converge to a poverty trap steady-state level of income and above which dynasties converge to a divergent growth path of income.

2.3 Concern for Status

Starting with Smith (1759) and Veblen (1899), a huge theoretical literature in the social sciences has been devoted to the idea that people care about and try to manipulate their status.16 Some of the theoretical models in this literature interpret conspicuous consumption

15In another paper, Banerjee and Mullainathan (2008) suggest that “comfort goods” can help divert workers’ attention from pressing problems at home so that workers who can afford such goods can pay more attention at work. The poor cannot afford comfort goods and so cannot pay the needed attention and hence stay poor. This poverty cycle is the result of an interaction between attention at home and comfort goods, which make the optimization problem non-convex, and produces a corner solution despite the fact that both output at work and at home are linear functions of attention.

16For recent empirical work that shows that people care about their status and relative position in society see Luttmer (2005), Clark and Oswald (1996), McBride (2001), and Dynan and Ravina (2007). See also the survey by Kahenman and Krueger (2006) and the references therein.
as a signal about unobserved income as we do here,17 while others focus on the idea that people care about their relative consumption.18 Empirical support for the notion that people rely on conspicuous consumption to influence their perceived status includes the work of Bloch et al. (2003) that is mentioned in the introduction, Chung and Fisher (2001) and Heffetz (2009).19 Charles et al. (2009), as mentioned above, argue that since the marginal return to signaling through conspicuous consumption is decreasing in the average income of a person’s reference group, less conspicuous consumption should be observed among individuals who have richer reference groups.20 Their prediction is consistent with their finding that consumption of ‘visible goods’ such as clothing, jewelry and cars is decreasing in the wealth of one’s racial reference group, so that Blacks and Hispanics consume relatively more such goods than comparable Whites.

The existing literature identified the potential negative impact that concern for status has on savings and growth through a rat race of escalating conspicuous consumption.21 But since this literature overlooked the fact that there could be a trade-off between human capital and conspicuous consumption as signals for income, it fell short of arguing that this may generate a poverty trap.

3 Model

Consider an overlapping generations model of a one-good economy with a continuum of individuals. The good can be used for consumption, conspicuous consumption, and investment

17See for example, Ireland (1994), Cole et al. (1995), Bagwell and Bernheim (1996), Glazer and Konrad (1996), Corneo and Jeanne (1998), and Charles et al. (2007).

18See for example Duesneberry (1949), Pollack (1976), and Frank (1985) for some of the early such models. Recently, Hopkins and Kornienko (2004) and Becker and Rayo (2006) analyzed the welfare implications of such preferences.

19Heffetz and Frank (2009) bring together some of the recent empirical and experimental evidence regarding preferences for social status.

20See also Heffetz (2007).

21See Corneo and Jeanne (1998), Cole, Mailath, and Postlewaite, 1992, and Bagwell and Bernheim, 1996. Status competition can also lead to increased capital accumulation and thereby economic growth. (e.g., Cozzi, 2004).
in human capital. Each individual lives two periods, has a single parent, and a single child. This parent-child relation creates a dynasty. When individuals are “young”, or in their first period of life, their parents are “old,” or in their second period of life.

In their first period of life, (young) individuals invest in human capital. An individual who invests \(e \geq 0 \) units of the good in human capital when young acquires \(h = h(e) \) units of human capital, which enters the production process in the following period, when the individual is old. In particular, we assume that

\[
h(e) = \theta + \gamma e,
\]

where \(\theta > 0 \) and \(\gamma > 1 \). Individuals defer their consumption to the second period of their life, and hence use any resources they receive from their parents when young to enhance their human capital.\(^{22}\)

In their second period of life, (old) individuals spend a fixed amount of their time working. An individual with human capital \(h \) produces a non-negative quantity

\[
y = h + \pi
\]

of the good, where \(\pi \in [\pi(h), \bar{\pi}(h)] \) is an unobserved component of income with an expected value of zero that is drawn from a continuous distribution. A plausible interpretation of \(\pi \) is that it reflects individual’s ability which is unobserved to others.

Old individuals allocate the resources they produce among consumption, \(c \), conspicuous consumption, \(x \), and a bequest, \(b \), which pays for the schooling of their offspring. Hence, their budget constraint is given by,

\[
c + b + x \leq y.
\]

Individuals’ preferences are represented by the following Cob-Douglas utility function:

\[
u(c, b, S) = B (c^{1-\beta} b^{\beta})^{1-\lambda} S^\lambda,
\]

\(^{22}\)If offsprings’ preferences affect their investment in education (c.f., Saez-Marti and Zilibotti, 2008) then this may imply a stronger correlation in human capital across generations, which would further contribute to the persistence of poverty.
where $\beta \in (0, 1)$ and $\lambda \in (0, 1)$ are parameters that capture the relative weight given to consumption, bequest, and status, $B \equiv (1 - \beta)^{\beta - 1} \beta^{1 - \lambda}$ is a constant coefficient, and $S = E(y|h, x)$ is “perceived status.” That is, we assume that the perceived status of an individual is given by the social belief about the individual’s expected income conditional on the individual’s level of human capital and conspicuous consumption, both of which we assume to be observable. Individuals’ consumption and the bequest they leave to their offspring are assumed to be unobservable. Our assumption of a "warm glow" motive - that parent’s preferences are defined over the investment in their offspring’s education rather than the offspring’s utility is a rather standard simplifying assumption in the literature. We believe there is no convincing reason to think that results would qualitatively be affected by considering an alternative structure.

There are two justifications for the assumption that the bequest is not observable. First, it is possible to interpret the bequest as the amount of resources that parents spend in order to educate their children. A lot of this spending, such as the effort that goes into instilling in children the value of learning or the number of hours that parents spend helping their children with their homework, is simply non observable. Second, the level of investment in a child’s education is only revealed after considerable delay. If, for instance, we interpret human capital as years of schooling, then investment in human capital is a continuous process. Consequently, not much can be learned from the fact that a child attends primary school, because it is not clear what will be the child’s final level of education.

The assumption that conspicuous consumption, x, does not generate any direct utility and that the consumption that does generate utility, c, is not observable, provides a simple expression for the notion that individuals may attempt to signal their wealth by shifting their expenditures towards more visible consumption goods. Such a shift would reduce individuals’ direct utility from consumption but would increase their utility from status.

The assumption that utility from status is defined by the social belief about the level of income, rather than by the social belief about the ranking in the income distribution greatly
enhances the analytical tractability of the model, and in light of the one-to-one mapping from ranking to income is not implausible. In fact, as shown in Section 4 assuming that status is defined over ranking would have no effect on the equilibrium level of conspicuous consumption if individuals’ income is uniformly distributed. However, analyzing the model under this alternative assumption prevents us from obtaining an analytical solution because the distribution of income is changing endogenously over time.

We restrict the model’s parameters as follows:

\[\beta \gamma > 1; \]

and

\[(1 - \lambda) \beta \gamma < 1. \]

As will become apparent, the first restriction ensures that in dynasties where conspicuous consumption is a sufficiently small fraction of individuals’ income, the expected level of human capital grows over time. The second restriction ensures that in dynasties where conspicuous consumption is close to a fraction \(\lambda \) of income, the expected level of human capital converges to a constant level.

Observe that the maximization of individuals’ utility function (3) subject to their budget constraint (2) implies that for any level of expenditure on conspicuous consumption, \(x \), the bequest that individuals leave to their offspring is

\[b = \beta (y - x), \]

(4)

and individuals’ consumption is

\[c = (1 - \beta) (y - x). \]

(5)

We now turn to the analysis of the allocation of resources to conspicuous consumption, \(x \). An equilibrium for this economy is defined as follows: Let \(x (h, y) \) denote individuals’ expenditure on conspicuous consumption as a function of their human capital, \(h \), and income,
\[y = h + \pi, \text{ and } y(h, x) \equiv E(y \mid h, x) \] denote the social belief about individuals' expected income as a function of their observable human capital and expenditure on conspicuous consumption, \(x \).

Definition. A pair of expenditure on conspicuous consumption and social belief functions \((x(h, y), y(h, x)) \) is an equilibrium if:

1. individuals' expenditure on conspicuous consumption \(x(h, y) \) is optimal given the social beliefs \(y(h, x) \); and
2. the social belief \(y(h, x) \) is consistent with the expenditure function \(x(h, y) \), or

\[
y(h, x) = E[y : x(h, y) = x].
\]

4 Equilibrium Analysis

In a standard signaling game, one player sends a message (signal) to which another player responds by taking an action that affects the former player's payoff. Thus, strictly speaking, because no one responds to individuals' choice of conspicuous consumption, the game that is described in this paper is not a standard signaling game. However, because individuals' levels of conspicuous consumption affect social beliefs, and these enter directly into individuals' utility, the game described here can be analyzed in much the same way as a standard signaling game.

Like any signalling game, the many different interpretations that can be given to different choices of off-equilibrium expenditures on conspicuous consumption give rise to many different equilibria. But, as shown in the appendix, plausible restrictions on off-equilibrium beliefs, and specifically, the restrictions imposed by a variant of the so called intuitive criterion (Cho and Kreps, 1987) imply that the equilibrium must be fully separating.\(^{23}\)

\(^{23}\)A precise definition of the refinement we use and a formal proof are presented in the appendix (Proposition 3). Intuitively, the intuitive criterion requires that individuals who deviate from equilibrium and claim to be of a certain type should be believed if all the other types would not want to deviate in the same way, even if by deviating they would be believed to be of this claimed type.
Plugging equations (4) and (5) into the individuals’ utility function (3) allows us to derive individuals’ utility as a function of their income \(y \), conspicuous consumption \(x \), human capital \(h \), and the social belief function \(y(h, x) \), as follows:

\[
 u(y, x) = (y - x)^{1 - \lambda} y^{\lambda} (h, x)^{\lambda}.
\]

(6)

An individual with human capital \(h \) and income \(y \) chooses the level of conspicuous consumption \(x(h, y) \) to maximize his utility (6). The implied first-order-condition is:

\[
\frac{\lambda}{1 - \lambda} \frac{y - x}{y(h, x)} = 1 \left/ \frac{dy(h, x)}{dx} \right..
\]

(7)

Note that the left-hand-side of this first-order-condition describes the marginal rate of substitution between the bundle of consumption and bequest, \(y - x \), and status, \(y(h, x) \), while the right-hand-side is the marginal cost of status (because the marginal cost of the consumption/bequest bundle is one). In equilibrium, these two marginal rates have to be equal.\(^{24}\)

Noting that in the fully separating equilibrium \(y = y(h, x) \), the solution \(y(h, x) \) of the differential equation (7) is (implicitly) given by the following equation:

\[
y(h, x)^{1/(1 - \lambda)} - \frac{x}{\lambda} y(h, x)^{\lambda/(1 - \lambda)} = y(h, x)^{1/(1 - \lambda)},
\]

(8)

where \(y(h) \equiv h + \pi(h) \) denotes the smallest possible income that an individual who is endowed with human capital \(h \) can possibly have. Except for special cases (such as \(\lambda = 1/2 \)), it is impossible to obtain an explicit solution for the equilibrium social belief \(y(h, x) \). But it is possible to invert the implicit solution for \(y(h, x) \) in equation (8) to obtain an explicit solution of the equilibrium level of conspicuous consumption \(x(h, y) \) as follows:

\[
x(h, y) = \lambda \left(y - \frac{y(h)}{y(h)^{1/(1 - \lambda)}} \right)^{1/(1 - \lambda)}.
\]

(9)

This result is summarized in the following proposition.

\(^{24}\) If status in the utility function were defined over the individual’s ranking in the income distribution, then the first order condition would have been: \(\frac{\lambda}{1 - \lambda} \left[\frac{y - x}{F(y(h, x))} \right] = 1 \left/ \frac{dF(y(h, x))}{dy(h, x)} \right. \), where \(F \) is the distribution of income. If \(F \) is a uniform distribution with support \([0, \bar{y}]\), then \(F(y) = y/\bar{y} \) and \(dF/\bar{y} = 1/\bar{y} \) for \(y \in [0, \bar{y}] \), and so this first order condition is identical to the first order condition derived from a utility function in which status is defined by income, as in (7). Therefore, defining status by the ranking in the income distribution has no effect on the analysis provided that income is uniformly distributed over some interval \([0, \bar{y}]\).
Proposition 1 The signalling game has a unique fully separating equilibrium
\[\langle x(h, y), y(h, x) \rangle. \]

In this equilibrium, expenditure on conspicuous consumption \(x(h, y) \) is given by equation (9), and social beliefs \(y(h, x) \) satisfy equation (8).

The uniqueness of the fully separating equilibrium follows from the fact that the left-hand-side of the first-order-condition (7), namely the marginal rate of substitution between the bundle of consumption and bequest, \(y - x \), and status, \(y(h, x) \), is unique, and so determines a unique marginal cost of status. Hence any combination of consumption, bequest, and status, determines a unique expansion path of expenditure on conspicuous consumption that is increasing with the rise of the unobserved component of income, \(\pi \). This path is pinned down by the fact that in a fully separating equilibrium, expenditure on conspicuous consumption is zero for an individual who has the lowest possible income \(y(h) \), and hence, accordingly, social beliefs are \(y(h, 0) = \bar{y}(h) \). This has to be the case because in a fully separating equilibrium an individual’s income is known. Hence, an individual who has the smallest possible income does not need to spend anything to signal this fact.
Equation (9) implies that the equilibrium expenditure on conspicuous consumption is

\[x(h, y) = \lambda y \] if \(y(h) = 0 \) (that is, if \(\pi(h) = -h \)). Otherwise, if \(y(h) > 0 \) (that is, if \(\pi(h) > -h \)), then \(x(h, y) \) has the following notable properties as depicted in Figure 1:

1. \(x(h, y(h)) = 0 \). An individual who is endowed with the worst possible unobserved component of income \(\pi = \pi(h) \) does not spend any income on conspicuous consumption.

2. For any fixed level of human capital \(h \), individuals’ expenditure on conspicuous consumption is increasing in the unobserved component of income, \(\pi \), and in their total income, \(y = h + \pi \).

3. For any fixed level of human capital \(h \), individuals’ expenditure on conspicuous consumption is concave in their income \(y \).

4. For any fixed level of human capital \(h \), the slope of individuals’ expenditure on conspicuous consumption as a function of their income increases to \(\lambda/(1 - \lambda) \) as individuals’ income decreases to \(y(h) \).

5. For any fixed level of human capital \(h \), the slope of individuals’ expenditure on conspicuous consumption as a function of their income tends to \(\lambda \) as individuals’ income increases.

6. Holding income constant, the larger is the unobserved element of an individual’s income, \(\pi \), or the smaller is the individual’s (observable) human capital, the larger is the individual’s expenditure on conspicuous consumption.

We now turn to study the behavior of the expected value of conspicuous consumption, \(x \), as a function of human capital, \(h \). First, we restrict the lower bound on the size of the
unobserved component of income, \(\pi(h) \). In particular, we assume that the lowest possible income of an individual who is endowed with a level of human capital \(h \), namely \(y(h) \equiv h + \pi(h) < h \), is nondecreasing and convex in \(h \).

Under these assumptions, expenditure on conspicuous consumption \(x(h, y) \) has two important properties that are summarized in the following proposition.

Proposition 2 If the lowest possible income of an individual who is endowed with human capital \(h \), \(y(h) \), is nondecreasing and convex in the individual’s human capital and \(y(0) = 0 \), then

1. the ratio of conspicuous consumption to human capital, \(x(y, h)/h \), is nonincreasing with human capital for individuals who are endowed with an income \(y \) that is larger than or equal to their level of human capital \(h \), or for whom \(\pi \geq 0 \), and

2. if, in addition, it is also the case that \(y'(h) \leq 1 \), then conspicuous consumption, \(x(y, h) \), is nondecreasing with human capital, \(h \).

The first part of the proposition that states that the ratio of conspicuous consumption to human capital, \(x(y, h)/h \), is decreasing in human capital when \(y \geq h \), is a key result of the model. It implies that the expected fraction of income allocated to investment in the human capital of the offspring is increasing in parental education, which allows for the emergence of a poverty trap.

Notably, this property is not necessarily true for values of \(y \) that are close to the minimum value \(y(h) \) because individuals who suffer a negative and large in absolute value unobservable addition to their income cannot afford to spend a large fraction of their income on conspicuous consumption (however, inspection of the proof reveals that the statement holds true for values of \(y < h \) that are close to \(h \) provided that the function \(y(h) \) is “convex enough”).

It is also not necessarily true that the share of expected conspicuous consumption out of total income, \(x(h, h)/y \), is decreasing with income, despite the positive correlation between
income y and human capital h. A large realized income could, in fact, imply a large positive random component π, and hence a high level of conspicuous consumption, x. Hence, the existence of a negative correlation between human capital and the share of conspicuous consumption doesn’t rule out the existence of a positive correlation between income and the share of conspicuous consumption.

Moreover, a model that is designed to understand conspicuous consumption among the rich (which is beyond the scope of this paper), would impose an upper limit on the accumulation of human capital, or at least decreasing returns to human capital. This would imply that the rich are wealthy due to a large unobserved component of income (which can also be thought of as family wealth in a non-human-capital form), and hence we would expect an increasing share of expected conspicuous consumption out of income above some level of income.

The second part of Proposition 2 is a result of the decreasing marginal rate of substitution between consumption and status, which imply that richer individuals are willing to spend more on conspicuous consumption in order to generate the same signal on unobserved income, and therefore, in equilibrium, they will spend more.

The assumption that $y(h)$ is nondecreasing and convex is consistent with the observation that a large negative unobserved component of income may cause an individual with low human capital to lose all his income, but that wealthier individuals can usually afford enough insurance to avoid becoming penniless even if the worst should occur. Moreover, it is also consistent with the findings of Gottshalk and Moffitt (1994) who found that the “transitory” component of inequality, compared to the “permanent” component, is much higher for uneducated workers (over the 1970s and 1980s in the USA). Their results show that inequality for educated workers is mainly increasing along predictable “permanent” dimensions such as ability, while uneducated workers are increasingly being tossed around in random ways. This randomness is associated with the higher unemployment rates experienced in the early 1970s that affected primarily the least educated workers. These findings suggest that changes in
technology during the past few decades have been operating in different ways for educated and less educated workers, and consequently, the risk associated with being uneducated has increased over time. Gould, Moav and Weinberg (2001) demonstrate empirically that workers consider this type of risk when making their schooling decisions. They also survey the facts on the differential rise in residual inequality.

Remark. It should be noted that the existence of a poverty trap hinges crucially on the fact that human capital is observable. If human capital is not observable, then the social beliefs $y(x)$ cannot depend on the individuals’ level of human capital, and individuals have no reason to condition their expenditure on conspicuous consumption $x(y)$ on their level of human capital. In this case, the unique solution of the differential equation (7) that satisfies $x(0) = 0$ yields the unique fully separating equilibrium level of conspicuous consumption:

$$x(y) = \lambda y.$$

That is, a constant fraction of income is allocated to conspicuous consumption and so the fully separating equilibrium cannot give rise to a poverty trap.

5 The Dynamics of Income

The fact that individuals’ output is subject to a random unobserved component of income implies that the relationship between individuals’ human capital, income, and bequest, and their offspring’s human capital and income is stochastic. We describe this relationship for the case of a dynasty that begins with an individual who has human capital $h \geq \theta$ and is subject to a random unobserved component of income to output π that is equal to its expected value, $E[\pi] = 0$, in every period.

We focus on the path where $\pi = 0$ for the sake of simplicity. However, although our analysis provides only a partial view of the type of growth paths that may exist in the economy, the view that is afforded is representative of the whole. Moreover, it is possible to arbitrarily reduce the variance of the unobserved component of income, π, in such a way that
it has no effect on the conspicuous consumption function \(x(y, h) \) (as long as the support of the distribution of \(\pi \) is unchanged and the density function is strictly positive on the entire support) such that almost all the realizations of the noise term \(\pi \) would be equal to, or in the neighborhood of the expected value of the noise term \(E[\pi] = 0 \).

Denote the human capital and output of an individual in a given dynasty at time \(t \) by \(h_t \) and \(y_t \), respectively. As explained above, we examine a dynasty where \(h_0 \geq \theta \) and where \(y_t = h_t \) for every \(t \geq 1 \). We denote the mapping that governs the dynamics of human capital by \(\phi \) so that

\[
h_{t+1} = \phi(h_t)
\]

for every \(t \geq 0 \).

By (1), (4), and (9), noting that \(e_t = b_t \),

\[
\phi(h_t) = \theta + \gamma \beta \left((1 - \lambda) h_t + \lambda \left(\frac{y(h_t)^{1/(1-\lambda)}}{h_t^{\lambda/(1-\lambda)}} \right) \right).
\]

For the purpose of illustration, we henceforth turn to the following example. Suppose that the lower bound on the noise term \(\pi(h) \) is equal to \(-h\) for small values of \(h \) but is equal to some \(\pi < 0 \) for values of \(h \) that are larger than \(|\pi|\), that is,

\[
\pi(h) = \begin{cases}
 -h & \text{for } h < |\pi|; \\
 \pi & \text{for } |\pi| \leq h,
\end{cases} \tag{10}
\]

and so

\[
y(h) = \begin{cases}
 0 & \text{for } h < |\pi|; \\
 h - |\pi| & \text{for } |\pi| \leq h.
\end{cases} \tag{11}
\]

In this case, it can be verified that the function \(\phi \) has the following properties:

1. If the lower bound on the noise term \(\pi \) is equal to the individual’s level of human capital in absolute value, \(\pi(h_t) = -h_t \), then

\[
\phi(h_{t+1}) = \theta + \gamma \beta (1 - \lambda) h_t.
\]

In this case, \(h_{t+1} \) is a linear function of \(h_t \) that intersects the 45 degree line because of our assumption that \((1 - \lambda) \gamma \beta < 1\).
2. If the lower bound on the noise term is a constant, \(\pi(h_t) = \pi < 0 \), then for \(h_t \geq -\pi \),
\(\phi \) is increasing and convex, with a slope that increases from \(\gamma \beta (1 - \lambda) \) as \(h_t \) tends to
\(-\pi\) from above, to \(\gamma \beta \) as \(h_t \) tends to infinity.

So, if it is assumed that the lower bound on the noise term \(\pi(h) \) is equal to \(-h\) for small
values of \(h \) but is equal to some \(\pi < 0 \) for values of \(h \) that are larger than \(|\pi|\) as in (10)
above, then it follows that the mapping \(\phi \) is increasing and (weakly) convex. If in addition
\(\pi < \theta / (\gamma \beta (1 - \lambda) - 1) \), then under the assumption that \((1 - \lambda)\beta \gamma < 1 \) and \(\beta \gamma > 1 \), the
mapping \(\phi \) intersects the 45 degree line twice as depicted in Figure 2.

![Figure 2: The mapping \(\phi \)](image)

It thus follows that a dynasty that begins with a low level of human capital will be
trapped in poverty unless it experiences a series of large positive \(\pi \)'s, or large unobserved
additions to income. In contrast, the output of a dynasty that begins with a high level of
human capital will grow indefinitely (converging to a rate of growth of \(\beta \gamma - 1 \)), unless it
experiences a series of large in absolute value and negative additions to income \(\pi \).

It should be noted that the assumption we imposed on \(\pi(h) \) through (10) is not necessary
for this conclusion to hold. The same qualitative result would continue to hold as long as the
share of expected conspicuous consumption out of human capital \(x(h, h) / h \) is decreasing, that is as long as the conclusions of Proposition 2 hold.

6 Concluding Remarks

This paper contributes to the literature about the significance and effect of conspicuous consumption by illustrating that if an individual’s level of human capital provides a signal about the individual’s income then more educated individuals will spend relatively less on conspicuous consumption. As a result, since human capital is correlated with income, our model offers an explanation for increasing marginal saving rates with income.

We show that this insight can contribute to our understanding of the behavior of the poor and the persistence of poverty. Intuitively, dynasties that are on a track of human capital accumulation reduce the share of income devoted to conspicuous consumption, which supports and reinforces further accumulation of wealth and human capital in the dynasty and facilitates upward mobility. In contrast, individuals with low levels of human capital spend a relatively larger fraction of their income on conspicuous consumption, which prevents their dynasty from accumulating human capital and escaping poverty.

Interestingly, if, as suggested by evolutionary considerations, females tend to worry less about their social status than males, then maternalistic societies in which women have more control over resources, may be characterized by less conspicuous consumption and a bigger potential for escaping poverty.

An extension of the model that incorporates differences across countries with respect to the transparency of human capital and individuals’ investment in the human capital of their offspring, may offer an explanation for cross country differences in conspicuous consumption and the persistence of poverty. Such differences could, for instance, emerge from differences across countries in the prevalence of private versus public schools. Similarly, differences in the distribution of income across countries, captured in the model by differences in the lowest realization of the unobserved component of income could have an impact on conspicuous
consumption as a function of income or human capital. As explained above, if status is defined by ranking in the income distribution rather than by social beliefs about the level of income, then the entire shape of the income distribution could have an impact on the conspicuous consumption function.

These potential differences across countries could lead to, or may be interpreted as, differences in social norms or culture with respect to the “creation of a spectacle.” As illustrated in this paper, such differences can have serious implications with respect to the persistence of poverty.
Appendix

Proof of Proposition 1. In a fully separating equilibrium the social belief $y(h, x)$ must be monotone increasing for every $h \geq \theta$. As explained in Section 3, the social belief $y(h, x)$ must satisfy the differential equation (7) for every $h \geq \theta$. This differential equation is homogenous and so can be transformed into a separable differential equation and then solved (Boyce and DiPrima, 1996, 90-91). The solution is given by (8) (the constant term must be equal to zero because $y(h, 0)$ must be equal to zero for every $h \geq \theta$ in equilibrium). Uniqueness of the equilibrium follows from uniqueness of the solution of (7), which follows from standard results about the uniqueness of solutions of differential equations, in addition to the fact that (7) has no singularity points in the relevant range. □

Proof of Proposition 2.

1. It follows from (9) that

$$\frac{x(h, y)}{h} = \lambda y h \left(1 - \left(\frac{y(h)}{h}\right)^{1/(1-\lambda)}\right).$$

The ratio $y/h = (h + \pi)/h$ is nonincreasing in h for $y \geq h$ and since $y(h)$ is nondecreasing, convex, and $y(0) = 0$, it follows that $y(h)/h$ is nondecreasing, which in turn implies that $x(h, y)/h$ is nonincreasing.

2. It follows from (9), noting that $y = h + \pi$, that:

$$\frac{dx(h, h + \pi)}{dh} = \lambda \left[1 - \frac{y'(h) - \lambda \left(\frac{y(h)}{h}\right)^{1/(1-\lambda)}}{1 - \lambda} \right].$$

Hence, noting that $y \geq y(h)$ and $y'(h) \leq 1$, it follows that for $y = y(h)$ and $y'(h) = 1$, $dx/dh = 0$. Otherwise, for $y > y(h)$ or $y'(h) < 1$, $dx/dh > 0$. □

The fully separating equilibrium is the unique equilibrium that satisfies a plausible restriction on social beliefs.
As we show below, in equilibrium the social beliefs $E[y|h,a]$ must be nondecreasing in x. Consider an equilibrium that is not fully separating. In such an equilibrium, individuals with different incomes all spend the same amount on conspicuous consumption. Since $E[y|h,a]$ is nondecreasing it follows that there exists an interval of incomes such that every individual whose income belongs to this interval spends the same amount, say a, on conspicuous consumption.

Suppose that the individual with the highest income in this interval, denoted y_b, is indifferent between spending a on conspicuous consumption and being believed to have an average income of $E[y|h,a]$, and spending an additional sum of $b - a$ on conspicuous consumption and being believed to have an average income of $E[y|h,b] > E[y|h,a]$. It follows that for some small $\varepsilon > 0$, an individual with income $y_b - \varepsilon$ who in equilibrium also spends a on conspicuous consumption should be indifferent between spending a on conspicuous consumption and being believed to have an average income of $E[y|h,a]$, and spending an additional sum of $b - a - \delta \varepsilon$ on conspicuous consumption and being believed to have an average income of $E[y|h,b] - \Delta \delta > E[y|h,a]$. However, an individual with a lower income than $y_b - \varepsilon$ who in equilibrium spends a on conspicuous consumption would strictly prefer to spend a than to spend $b - \delta \varepsilon$ on conspicuous consumption even if this implies that he would be believed to have the higher income $E[y|h,b] - \Delta \delta$.

We consider the following variant of the intuitive criterion (see Cho and Kreps, 1987, Banks and Sobel, 1987, and Grossman and Perry, 1986, and the references therein). We say that an equilibrium satisfies a variant of the intuitive criterion if upon observation of out-of-equilibrium level of conspicuous consumption of $b - \delta \varepsilon$, it is inferred that the individual who spent this amount has an income that is at least $y_b - \varepsilon$.

Proposition 3. An equilibrium $(x(h,y), E[y|h,x])$ that satisfies the variant of the intuitive criterion described above is fully separating.

25 As should become apparent below, it does not matter if this individual actually spends a or b on conspicuous consumption. That is, it does not matter whether the interval of incomes is closed or open from the right.
Proof. The proof follows from the following five steps.

1. An equilibrium belief function $E[y/h,x]$ is non-decreasing in x. If, to the contrary, for some $h \geq 0$ and $x' > x$, $E[y/h,x] > E[y/h,x']$, then an agent can spend less on conspicuous consumption and still be believed to have a higher expected income. A contradiction to the optimality of the conspicuous consumption function.

2. An equilibrium expenditure on conspicuous consumption, $x(h,y)$, is non-decreasing in y. Suppose to the contrary that an agent with human capital h and income y' spends x' on conspicuous consumption, $c' = (1-\beta)(y' - x')$ on consumption, and $b' = \beta(y' - x')$ on bequest, and is believed to have an income \bar{y}', while an agent with human capital h and income $y < y'$ spends $x > x'$ on conspicuous consumption, $c = (1-\beta)(y - x)$ on consumption, and $b = \beta(y - x)$ on bequest, and is believed to have an income $\bar{y} \geq \bar{y}'$. Because the latter agent optimizes,

$$
((1-\beta)(y - x))^{(1-\beta)(1-\lambda)}(\beta(y - x))^{\beta(1-\lambda)}\bar{y}^\lambda
$$

$$
\geq ((1-\beta)(y - x'))^{(1-\beta)(1-\lambda)}(\beta(y - x'))^{\beta(1-\lambda)}(\bar{y}')^\lambda,
$$
or

$$(y - x)^{(1-\beta)(1-\lambda)+\beta(1-\lambda)}(1-\beta)^{(1-\beta)(1-\lambda)}\beta^{(1-\lambda)}\bar{y}^\lambda
$$

$$
\geq (y - x')^{(1-\beta)(1-\lambda)+\beta(1-\lambda)}(1-\beta)^{(1-\beta)(1-\lambda)}\beta^{(1-\lambda)}(\bar{y}')^\lambda,
$$
or, because $\frac{y' - x}{y - x}$ is increasing in x,

$$
\left(\frac{y' - x}{y - x}\right)^{(1-\beta)(1-\lambda)+\beta(1-\lambda)}(y - x)^{(1-\beta)(1-\lambda)+\beta(1-\lambda)}(1-\beta)^{(1-\beta)(1-\lambda)}\beta^{(1-\lambda)}\bar{y}^\lambda
$$

$$
> \left(\frac{y' - x'}{y - x'}\right)^{(1-\beta)(1-\lambda)+\beta(1-\lambda)}(y - x')^{(1-\beta)(1-\lambda)+\beta(1-\lambda)}(1-\beta)^{(1-\beta)(1-\lambda)}\beta^{(1-\lambda)}(\bar{y}')^\lambda.
$$

But then

$$
((1-\beta)(y' - x))^{(1-\beta)(1-\lambda)}(\beta(y' - x))^{\beta(1-\lambda)}\bar{y}^\lambda
$$

$$
> ((1-\beta)(y' - x'))^{(1-\beta)(1-\lambda)}(\beta(y' - x'))^{\beta(1-\lambda)}(\bar{y}')^\lambda,
$$
which means that the agent with income y' cannot be optimizing.

3. If for some level of human capital h the belief function $E[y|h,x]$ is constant (as a function of x) on an interval, then it “jumps up” immediately to the right of this interval. That is, if for some fixed h the social belief $E[y|h,x]$ is constant on an interval $[a,b]$ or $[a,b)$ and is such that $E[y|h,x] > E[y|h,b]$ for $x > b$ then $\lim_{x \to b} E[y|h,x] > E[y|h,b]$, or $E[y|h,b] > \lim_{x \to b} E[y|h,x]$, respectively. We prove this claim for the latter case. The proof for the former case is similar. Suppose to the contrary that two agents with the same h spend a and b on conspicuous consumption. If the two agents are believed to have the same expected income then the agent who spends b on conspicuous consumption cannot be optimizing.

4. If for some h, $E[y|h,x]$, viewed as a function of x alone, is constant on an interval $[a,b)$, then the agent with the lowest income y_b who spends b on conspicuous consumption in equilibrium must be indifferent between spending b or a on conspicuous consumption. If no such agent exists, and an agent with income $\inf \{ y : x(h,y) = b \}$ spends a on conspicuous consumption, then this agent must be indifferent between spending a or b on conspicuous consumption. In the former case, it follows from the fact that agents with incomes $y < y_b$ prefer to spend a on conspicuous consumption and continuity; in the latter case, it follows from the fact that agents with incomes $y > \inf \{ y : x(h,y) = b \}$ prefer to spend b on conspicuous consumption and continuity. The statement and proof in the case where $E[y|h,x]$ is constant on an interval $[a,b)$ is similar.

5. Fix an equilibrium $(x(h,y), E[y|h,x])$. If the belief function $E[y|h,x]$ is (strictly) increasing, then we’re done. Suppose then that for some level of human capital h, the belief $E[y|h,x]$ is constant on some interval $[a,b)$, and that it jumps up immediately thereafter as implied by step 3. Suppose that the equilibrium is such that an agent with income y_b spends b on conspicuous consumption, and that agents with lower
incomes spend no more than a on conspicuous consumption (the argument for the case where agents with incomes $y > y_b$ spend at least b on conspicuous consumption, and an agent with income y_b spends a on conspicuous consumption is similar). Step 4 implies that an agent with income y_b is indifferent between spending a on conspicuous consumption if he is believed to have an average income of $E[y|h,a]$, and spending an additional sum of $b - a$ on conspicuous consumption if he is believed to have an average income of $E[y|h,b] > E[y|h,a]$. Similarly, for some small $\varepsilon > 0$, an agent with income $y_b - \varepsilon$ is indifferent between spending a on conspicuous consumption if he is believed to have an average income of $E[y|h,a]$, and spending an additional sum of $b - a - \delta\varepsilon$ on conspicuous consumption if this implied that he would be believed to have an average income of $E[y|h,b] - \Delta\delta > E[y|h,a]$. In contrast, an agent with a lower income than $y_b - \varepsilon$ strictly prefers to spend a than to spend $b - \delta\varepsilon$ even if this means that he would be believed to have the higher income $E[y|h,a] - \Delta\delta$. So, an agent with income between $y_b - \varepsilon$ and y_b would like to spend a little more if this meant that it were believed to have a higher income but this is not possible with the equilibrium beliefs $E[y|h,x]$. But, if such an agent deviates from equilibrium and spends an additional sum of $b - a - \delta\varepsilon$ on conspicuous consumption, then it should be believed that his income is at least $y_b - \varepsilon$, because, as explained above, it is not be in the interest of an agent with a lower income to deviate in this way even if he were believed to have an income that is equal to $y_b - \varepsilon$. This argument implies that if $E[y|h,x]$ is part of an equilibrium that satisfies the intuitive criterion, then it cannot be constant on any interval. It therefore follows that it must be part of a fully separating equilibrium. ■
References

Case, Anne, Anu Garrib, Alicia Menendez, and Analia Olgiati (2008) "Paying the Piper: The High Cost of Funerals in South Africa" NBER Working Paper 14456

