Meaning: Ubiquitous and Effortless

Laura A. King

University of Missouri, Columbia
Meaning: Ubiquitous and Effortless

It may be one of the great achievements of the Cognitive Revolution that psychology approaches meaning much like Hamlet in concluding that “There is nothing either good or bad but thinking makes it so.” As Lazarus (1984) argued, thinking determines the meaning of experience and meaning is, therefore, a remarkably malleable commodity. The meaning of any event or experience is whatever one cognitively construes it to be. That is, thinking is where meaning comes from. From this perspective, meaning is, by its nature, a question to be answered, a problem to be solved, or a construct to be created.

In this chapter, I will present a very different approach to meaning, namely that meaning is rarely proximally or effortfully constructed. Rather than being shattered, violated, or absent, meaning is often present. Meaning is everywhere, widely available, and routinely accessed in an effortless fashion as an inherent aspect of experience. Essentially, I will argue that thinking is one way in which meaning is created but that thinking is rarely needed (or particularly useful) in the experience of meaning. Although we often talk of “making sense” of experience, I will argue that more often than otherwise, sense is not made but, indeed, sensed.

Understanding this often-present experience of sense is important for at least two reasons. First, focusing on meaning when it is missing, violated, challenged, or threatened risks leaving us with very little information about the 98% of the time when life makes sense. In thinking about meaning as an experience that emerges from thinking, we have forgotten what meaning feels like most of the time. Second, this focus has also left us with a dearth of knowledge about the criteria against which constructed meanings ought to be evaluated. How can we know when meaning-making efforts will satisfy the longing for meaning? What might distinguish good constructed meanings from those that do not fulfill that longing?

I begin this chapter by briefly reviewing William James’ idea of the subjective rationality of experience and draw links from this perspective to intuitive information processing. I then provide a very brief taste of the origins of a sense of meaning and argue that engagement in thought is rarely required for the experience of meaning. I will identify the intuitive information processing system (Epstein, 1994) as
Meaning: Ubiquitous and Effortless

responsible for the experience of this unintentional meaning and describe the role of positive affect (PA) in the functioning of this meaning-detection system. I then present evidence concerning the detection of the presence of meaning. I conclude this analysis by noting its implications for constructed meanings and the experience of meaning in life.

Sensing Sense

William James (1893) described the fringe of consciousness as non-sensory experiences that emerge around conscious thoughts. The fringe of consciousness contains meta-cognitive experiences that provide consciousness with continuity and a sense of the relations among the elements of experience. James suggested that at the heart of the non-sensory fringe of the stream of consciousness is the feeling of the “subjective rationality of experience” or the “rightness of direction” of one’s thoughts. This feeling of rightness is responsible for our perception that experiences make sense (Mangan, 2000, 2001). Mangan (2001) described the feeling of “right direction” as “the feeling of meaning” (p. 13). The feeling of meaning pertains to a feeling about an event or experience that one has found to “feel right.” Like other aspects of the fringe of consciousness (e.g., feelings of familiarity, knowing, or causation) feelings of rightness are evident instantly, although they may be amorphous and fuzzy (Mangan, 2001). The feeling of meaning is present when experience fits with its context and one’s expectations (King & Hicks, 2009a) and absent when experience violates these (Heine, Vohs, & Proulx, 2006). When experiences feel right they also feel better. Subtle facial musculature activity suggestive of PA occurs when stimuli make sense (Topolinski, Likowski, Weyers, & Strack, 2009) or when expectancies are not violated (Harmon-Jones & Allen, 2001; Winkielman & Cacioppo, 2001).

The clear overlap between James’ description of the fringe of consciousness and our contemporary understanding of intuitive information processing has been recognized (e.g., Nickerson, 1990; Reber & Schwarz, 2001; Reber, Wurtz, & Zimmerman, 2004; Topolinski & Strack, in press). Intuitive processing is generally characterized as rapid, internally generated, top-down, requiring little in terms of awareness, and based, phenomenologically, on vague gut feelings, hunches, or vibes (Epstein, 1994). I will return to this system more specifically later, but in the next few sections I will argue that
Meaning: Ubiquitous and Effortless

given the adaptive importance of the experience of sense, it is just such a system that functions in the
detection of the presence of meaning.

The Simplest Meanings of Life

To undertake a consideration of the presence of meaning or the subjective rationality of
experience, we can begin with what I hope is not a controversial assumption: Like all other animals,
human beings live in a lawful physical world. That world is characterized by invariants. For instance, the
existence and physical characteristics of objects have a constancy that our perceptual systems are wired to
accommodate. Further, objects fall down (not up), causes precede their effects, morning follows night,
and Spring follows Winter. For all creatures, adaptation requires the capacity to detect the relevant
invariants of existence. At the simplest level, the experience of “sense” is centered in the durability of
this natural lawfulness. To the physical invariants noted above, we might add that the day after Monday is
Tuesday, and no matter what else is going on we can all “Hang on, baby” because, inevitably, “Friday’s
coming.” In this sense, meaning is a local, proximal concern that is generally present in our work-a-day
predictable lives. Often psychologists describe meaning in terms of expectancies. The existence of these
invariants suggests that we have expectancies because we live in a world that invites them and more often
than not conforms to them. Perceptions of these invariants may represent our first expectancies.

In today’s increasingly post-Piagetian psychology of infant cognitive development, we see that,
for humans, the detection of the invariants in our world does not require “thinking,” in the usual sense.
For example, in a series of meticulous studies, Luo and Baillargeon (2005) presented infants ranging from
2 to 3.5 months of age with physically possible and impossible situations. The infants watched a puppet
show in which the “set” was a panel (a castle) with a square cut out of its middle (the open castle door)—
leaving an open space through which the back of the stage could be seen. A puppet entered the stage
from one side, traversed the stage, going behind the leftmost side of the castle. In the possible situations,
the she traveled behind the left side of the castle, was seen appearing in the cutout, and then continued
behind the right side, emerging again, and finally exiting the stage. In the impossible situations, the
infants saw the puppet make the same journey, but in this case, after going behind the first side of the
castle, she did not appear in the cutout. Instead, she emerged directly out of the opposite side, exiting the stage. That is, in this impossible situation, the puppet “magically” appeared, without ever revealing herself in the open door of the castle. Infants looked reliably longer at the impossible than at the possible situations, indicating that they noticed this violation of natural physical laws (Luo & Baillargeon, 2005). We might say that prior to these violations, the world was making sense, even for infants as young as 2 months old. In its simplest form, sense exists without the intervention of higher-level cognitive efforts.

Adaptation requires not only noticing invariants in the environment, but also the capacity to detect and learn from regularities and predictable associations. Sophisticated cognitive architecture the likes of which characterize conscious thought is unnecessary for such learning. Certainly, since Pavlov and Skinner, we know that learned associations do not require a system that includes intentionality but simply one that detects lawfulness and predictability in the environment.

Symbolic Meanings

Of course, when human beings talk of meaning, they are not concerned, generally, with infant perception of the laws of physics nor the nonconscious detection of regularity in the environment. We refer to the underlying meaning of a stimulus, to the idea that stimuli serve as representations of other deeper meanings. We recognize that pictures and words are symbols that reflect a referent. Such representational thought is at the basis of language itself. Talking, comprehending, and reading words implies that one has the capacity to recognize that symbols (words) have referents (meanings). Right now, the reader of this chapter is, one hopes, immersed in meaning. The automaticity of this encounter is demonstrated in the classic Stroop effect (Stroop, 1935).

The Stroop effect refers to the reliable delay that ensues when a person is asked to name the color in which a word is printed, when the word itself names a different color (e.g., the word “blue” printed in red ink). At its base, the Stroop effect demonstrates that overlearned symbolic meanings are not only automatically perceived but difficult to avoid. Only with effortful regulation of this automatic meaning-relevant response can a person avoid the delay in responding. In other words, conscious effort is not required to recognize semantic meaning, but it is required to avoid meaning. The “underlying” meaning
Meaning: Ubiquitous and Effortless

of a word is not sought out. It springs forth instantaneously as our first habitual response, supersed ing even the physical properties of the object perceived. Though clearly the product of distal effortful processes (e.g., a person who cannot read would not show the Stroop effect at all), semantic meaning, once acquired, operates automatically.

Symbolic meaning can also be seen to function automatically in the operation of metaphors. A host of fascinating studies has emerged around the notion of embodied cognition, pointing to the fact that our bodies traffic in metaphorical meanings in ways that are, again, not mediated by awareness. Bodily movements conveying metaphors can have an array of effects on thoughts and behaviors. For example, Schwarz and colleagues (2011) found that participants who were asked to hold both palms facing upward and alternately move them up and down (a movement that conveyed the metaphor of weighing both sides) were more likely, relative to those performing a control movement, to attend to both sides of an argument and endorse greater balance in their lives (Schwarz et al., 2011). Importantly, such effects arise in the absence of awareness of the metaphorical significance of the movements and, indeed, the presence of awareness wipes out these effects, suggesting that conscious thought, rather than facilitating the emergence of meaning, may well interfere with its nonconscious (and potentially visceral) flow.

Research on judgments of semantic coherence likewise suggests that intentionality is not involved in and may even impede the discrimination of semantic sense from nonsense. In this research, participants are often given loosely related linguistic triads and are asked to guess as quickly as possible whether or not the triad has a fourth word that unites the other three (participants are not asked to produce the common associate but only whether they feel like one exists). For example, the triad, “snow” “base” and “dance” is coherent (common associate, “ball”), while the triad “mouth” “lines” and “sixteen” is incoherent (there is no common associate). Interestingly, relying on intuitive hunches, people are generally better than chance at accurately discriminating between coherent and incoherent triads, while thinking carefully about these judgments leads to poorer performance (Topolinski & Strack, 2008).

Topolinski and Strack (e.g., 2009) proposed a fluency-affect model of these judgments that focuses on meta-cognitive processing ease and subtle indicators of PA. They noted that coherent triads
Meaning: Ubiquitous and Effortless

are more fluently processed than incoherent triads (Topolinski & Strack, in press-a). This fluid processing is reflected in subtle changes in facial musculature indicating PA. According to Topolinski and Strack, this fluency-triggered affect leads to the experiential “gut feeling” that drives accurate intuitive judgments.

Clearly, the question posed by semantic coherence judgments is, centrally, “Is this triad sense or nonsense?” The Topolinski-Strack model (and the host of empirical studies supporting it; see e.g., Topolinski & Strack 2009; also, Reber, Wurtz & Zimmerman, 2004; Wurtz, Reber, & Zimmerman, 2008) suggests that such discrimination occurs automatically and is based, not on thoughtful consideration but rather on nonconscious and subtle experiences of meta-cognitive ease and free floating affect.

Thus far, I have argued that meaning happens to us automatically through the detection of regularities in a lawful world, through reading, in the bodily operation of metaphors, and in vague hunches driven by processing ease. Importantly, research suggests that, in adults, nonconscious violation of expectancies can lead to systematic differences in later responses, supporting the notion that the presence of meaning is monitored on a nonconscious level.

A Circumscribed Lesson from the Meaning Maintenance Model

The Meaning Maintenance Model (MMM; Heine, Proulx, & Vohs, 2006) focuses on the ways that expectancy violations lead to meaning reinstatement (i.e., attempts to defend or uphold meaning). Of most relevance here, this research demonstrates that violations of expectancy can influence subsequent behavior even in the absence of awareness of the violation. For instance, in a pair of clever experiments (Proulx & Heine, 2008) participants came to a lab and were greeted by a female experimenter who escorted them to a computer to complete a variety of measures. During the lab assessment, the experimenter walked behind a file cabinet. For those in the control condition, she returned and administered the dependent measures, which in this case involved assigning bail to a prostitute (i.e., a person who had violated cultural norms, thought to be a source of meaning). For those in the violation condition everything was the same with the exception that the experimenter who emerged from behind the cabinet was a different woman. This new experimenter was dressed identically to the previous one.
and administered the dependent measure. Only 10% of the participants noticed that the experimenter was a different woman. Analyses excluding these individuals showed that those who had experienced the “transmogrifying experimenter” set higher bails for the prostitute (Proulx & Heine, 2008).

For the purposes of the present discussion, the key conclusion one might draw from this work is perhaps more limited than that favored by the MMM. Whether or not setting a higher bail in fact “reinstated” previously “violated” meaning, was motivated by a chronic need for meaning, or reflected, instead, misattribution, cognitive conflict, or dissonance, the bottom line is that nonconscious violations registered, suggesting that the presence of meaning itself may be monitored by an ongoing process in the background of mental life.

In all of the examples I have used so far, the detection of meaning has, itself, made sense. Infants looked longer at impossible situations. Accurate discrimination between objective sense and nonsense is demonstrated in linguistic triad studies. College students responded to an objectively real (if undetectable) violation of sense in a systematic way. Before exploring the underlying processes that may support automatic experiences of meaning, we might consider one additional issue with particular relevance to intuitive processing, the potential irrational qualities of meaning.

The Innately Meaningful

Taken to its extreme, the notion that thinking creates meaning suggests that nothing is inherently meaningful. Nevertheless, some experiences can feel innately meaningful. Sometimes the meaning of a life event feels all but inescapable, based solely on the experience of temporal proximity. These meaningful moments emerge around events that approximate physical laws but are not, in fact, products of them (e.g., Kozak, Marsh, & Wegner, 2006). Imagine a person experiencing a particularly strong sneeze while walking past a skyscraper. If, by chance, the building collapses immediately after the sneeze, the implications are clear (if decidedly unrealistic). In more common circumstances, random coincidence has the capacity to invite the feeling that things were “meant to be.”

The psychological power of random events in the human experience of meaning has long been recognized. Both Freud and Jung noted the ways in which coincidence can be a strangely compelling fish
Meaning: Ubiquitous and Effortless

in the stream of consciousness. As Freud (1919/1953) noted, the experience of the *uncanny* “forces upon us the idea of something fateful and inescapable when otherwise we would have spoken only of ‘chance’” (p. 230). Likewise, Jung (1950/1997) described *synchronicity* as taking “the coincidence of events as meaning something more than mere chance” (p. xxv). Similarly, a long history of modern research on counterfactual thinking suggests that when an unlikely twist of fate or a random occurrence is brought into a story, the events feel fated or meant to be (e.g., Markman & Mullen, 2003).

In research on narrative constructions of meaning, my collaborators and I collected narratives from parents of children with Down Syndrome (DS) (King et al., 2000). Participants wrote the story of finding out that they would be parenting a child with DS. For 17% of these parents, the story began, not with a prenatal test, or a few moments after the child was born but instead months before, when the fact that the child had DS was *foreshadowed* by an objectively random event. For example, one woman began her story with an experience at a baby shower. She and her husband were given the book *What to Expect When You’re Expecting* (an enormously popular book for new parents). The husband opened the book “at random” and started reading. They both “recoiled in horror” as they realized he was reading about DS. Other parents mentioned dreams or vague hunches that occurred and persisted despite no medical evidence of any problems. Interestingly, those who included such foreshadowing were more likely to have found positive meaning in the experience (i.e., reporting greater personal growth as a result of parenting a child with DS; King et al., 2000).

Rationality tells us that these experiences are random. These foreshadowing moments could happen to any number of expectant parents, some portion of whom might have a child with DS. Logic tells us that the odds of such events occurring by chance are far higher than these parents might imagine. Nevertheless, these and other more common encounters with apparent magic (i.e., the thought that a traffic light turned red *specifically because* we were in hurry) persist in the imagination and tug powerfully on the strings of meaning, suggesting that meaning itself may be a far less rational process than might be assumed in a world where all meanings are constructed.
At last, then, we consider, directly, the system that is responsible for the detection of meaning. It is one that is automatic and runs in the background, at the fringe, of mental life. It applies as a default mode of information processing (because the presence of sense, itself, is the default). It has the capacity to detect regularities and subtle variations in ease of processing. It can also be, at times, apparently not terribly rational, and neither good at nor convinced by mathematical probabilities.

Intuition, Rationality, and Meaning

Dual process models of information processing often describe one system that is rapid, heuristic, and intuitive (System 1) and another that is slower, effortful, and analytical (System 2) (e.g., Bargh, 1989; Evans, Newstead, & Byrne, 1993; Stanovich & West, 2000). Importantly, both systems of processing are important to adaptive behavior and these two systems are generally thought to work together, dynamically, to allow humans to function.

Table 1 provides a brief summary of the characteristics of these two systems. I note just a few of their differences that are particularly relevant to meaning. First, the intuitive system is generally more subjective than the rational system. The intuitive meaning of a life event, for instance, is inherently subjective while rational conclusions have objective weight. Regardless of who does the math, $2 + 2 = 4$. Also, as noted in the table, the two sides of information processing relate differently to affect. Negative affect (NA) signals that analytical problem-solving (i.e., System 2 processing) is required. In contrast, PA signals that all is well and one can indeed follow one’s hunches (i.e., System 1 processing) (e.g., Clore & Palmer, 2009). Finally, as I have proposed, these two systems may be viewed as serving different functions in the experience of meaning, with System 1 generally functioning as the meaning detection system and System 2 being more relied upon in the process of meaning construction.

My colleagues and I have used Cognitive Experiential Self Theory (CEST; Epstein, 1994) to explore the role of intuition in the experience of meaning. CEST presents these two styles of information processing as individual differences in habitual processing style, with the intuitive style being reflected in the characteristics noted in Table 1. The processing style that characterizes the intuitive system has been measured using the Faith in Intuition (FI) Scale (Pacini & Epstein, 1999), and scores on this measure do
predict intuitive processing (e.g., reliance on heuristics; e.g., Epstein, Pacini, Denes-Raj, & Heier, 1996; Shiloh, Salton, & Sharabi, 2002).

A note about the role of PA is warranted here. As noted above, the two sides of human information processing generally work together to produce adaptive behavior. Table 1 includes the notion that System 1 is the default system and System 2 (which is generally a more costly processing style, in terms of effort and energy) is used more judiciously when needed. One of its function is to override System 1 impulses when these are likely to be inaccurate (as in the case of biases associated with, say, heuristic processing) or ineffective (as in the case of doing math problems). In our research, we have found that reporting oneself as intuitive is not sufficient to demonstrate the effects of this individual difference on beliefs and behavior. Rather PA appears to be required to strongly shift the balance of processing over to the intuitive system, allowing for these individual differences to manifest in behavior without interference from rational impulses. In this sense, we might think of PA as giving the “go ahead” to the intuitive system for whatever task is at hand (King et al., 2007).

In a number of studies, we have examined the ways that PA and individual differences in reliance on intuitive processing predict the experience of meaning. We began by examining these variables as predictors of paranormal or magical meanings. For example, when presented with videotapes of purported UFOs and ghosts, intuition predicted ratings of the believability and meaningfulness among participants in a positive (vs. neutral) mood condition (King et al., 2007, Study 1). Similarly, in studies of susceptibility to sympathetic magic, intuition and naturally occurring PA interacted to predict poorer performance in hitting a picture of a baby with darts, and induced PA (vs. neutral mood) predicted sitting farther from a person who had purportedly stepped in excrement, for those who were high on intuition (King et al., 2007, Studies 2 and 3). More recently, the relationship of naturally occurring PA to referential thinking (ascribing personal meaning to patently meaningless events, such as thinking that traffic lights did turn red because one was in a hurry) was similarly moderated by individual differences in intuition (King & Hicks, 2009b).
These studies indicate that when in a good mood, the intuitive system is more likely to ascribe (in these cases, non-rational) meaning to experience. Might the convergence of PA and intuitive processing represent a more general meaning-detection system?

Positive Affect, Intuition, and Garden Variety Feelings of Meaning

In a series of studies we examined whether PA and intuitive processing style predict feelings of meaning for a variety of stimuli (each evaluated by independent samples), including ambiguous quotations, Zen koans, and Japanese Kanji characters (Hicks et al., 2010, Study 1). For all of the stimuli, participants were asked to rate their feelings of meaning (e.g., “It makes sense to me”). For all of the stimuli, a consistent pattern emerged, such that self-rated feelings of meaning were predicted by the interaction of PA and individual differences in reliance on intuitive processing, with PA being especially associated with feelings of meaning for those high on intuition. In a subsequent study, we found similar patterns for real-life negative events. As an example (Hicks et al., 2010, Study 2), a sample of students rated the extent to which the events surrounding Hurricane Katrina fit with their preexisting expectations, within days of the storm’s landfall. In this case, once again, PA informed feelings of meaning for those who were high on intuition.

Of course, these studies are limited by the fact that subjective rationality is innately subjective. Indeed, feelings of meaning may differ from other aspects of the fringe of consciousness in one important way: The subjective feeling of meaning may lack an objective referent against which to judge its accuracy. Feelings of knowing or feelings of familiarity can be tested against objective reality. For the subjective feeling of the sense of some experience, however, an objective measure of accuracy may be difficult to specify, suggesting that the subjective rationality of experience may be definitively subjective (as William James himself asserted). In order to address this specific concern, we conducted a final study that used the semantic coherence judgment paradigm described previously.

In this study (Hicks et al., 2010, Study 3), participants were randomly assigned to a positive or neutral/freestanding mood condition. Those in the positive mood condition received an unexpected payment of $20 for their participation prior to completing the dependent measures (those in the
freestanding mood condition were similarly compensated at the end of the study but were not expecting to be paid). Participants then completed the same task used in the Topolinski and Strack (2009) studies described above. They were told to guess, as quickly as possible, whether presented triads were coherent or incoherent. Figure 1 shows the results for the key dependent measure of interest, A’, a measure of signal detection. As can be seen in the figure, in the positive mood condition, reliance on intuitive processing was associated with superior discrimination of sense from nonsense.

Of course, these semantic coherence judgments are limited. They are thought to represent widely shared over-learned patterns of meaning (Kahneman & Klein, 2009). Thus, it is ambiguous whether individuals who were successful at these judgments would be equally able to discern meaning based not on a lifetime of learning, but during the process of learning itself. I have argued that the intuitive system ought to play a role in the discernment of regularities in the environment. Thus, more recently, these findings have been generalized to implicit learning (Cicero, Hicks, & King, in prep).

In one study, participants were asked to copy letter strings that (unbeknownst to them) followed specific artificial grammar rules. Induced PA interacted with individual differences in intuition to predict accuracy in recognizing letter strings that conformed to those rules on a subsequent task. In a second study, induced PA interacted with individual differences in intuition to predict accuracy in estimates of the reward contingencies associated with various discriminative stimuli in an operant conditioning paradigm. These findings lend support to the notion that, unfettered by the influence of rationality, the intuitive system not only recognizes overlearned meanings but plays a role in acquiring the meaning of stimuli, even via subtle processes that do not implicate awareness.

Implications for Made Meanings and Meaning in Life

I close this chapter by addressing two topics that are perhaps more central to the psychology of meaning than anything I have covered so far, meaning-making and meaning in life. The literature on meaning-making is a mixed bag, to say the least (see Park, 2010, for a thorough review). Among individuals who have experienced similar traumatic events, some search for meaning (others never do), and some searchers find meaning (whereas other searchers never do). Further, even among those who
have “made meaning,” consistent evidence for the salubrious effects of this sense making has not emerged (Park, 2010). A better understanding of the presence of meaning might clarify these issues. Presumably both the intuitive and rational systems take part in the construction of meaning when it occurs. However, whether that construction feels meaningful is judged by the standards of the intuitive system. The system that naturally detects the presence of meaning in our world is the one that answers the question, “Does this feel right?” Thus, we might consider the extent to which constructed meanings reflect the kinds of processes that have been shown to appeal to this system as indications of meaning. Constructed meanings should be satisfying to the extent that they approximate the presence of meaning when it occurs naturally. Thus, a constructed meaning ought to be viable to the extent that it feels right, just as an object falling down (not up) feels exactly and intuitively right.

The experience of meaning in life is certainly an important aspect of psychological well-being. Our research suggests that although individual differences in intuition may not determine all aspects of the assessment of meaning in life, judgments of meaning in life are strongly influenced by intuitive factors, such as PA (King et al., 2006), heuristics (King, Hicks, & Abdelkhalek, 2009), and accessible information (e.g., Hicks & King, 2009). Perhaps most importantly, our research demonstrates a robust, durable (Hicks et al., in press; Trent & King, 2010), and causal role for PA in the experience of meaning in life (see Hicks & King, 2009, for a review). Indeed, this research shows that when a host of other sources of meaning in life are absent, a pretty good mood can cause life to feel meaningful (e.g., Hicks, Schlegel, & King, 2010).

Our research on the detection of meaning and the experience of meaning in life lead to the conclusion that in thinking about meaning, meaning in life, and happiness, psychologists have often confused causes and effects. Faced with traumatic life events, a meaning-maker might note that, “If I could just make sense of this, I would feel better.” Our research suggests that the situation may be more accurately expressed, “If I could just feel better, this would make sense.” In thinking about meaning in life and happiness, the self-help literature seems to convey the message that “If life had meaning, I could be happy.” Our work suggests a different conclusion: “If I were happy, life would have meaning.”
Although we often bring our powerful cognitive capacities to bear on meaning when it is violated or feels absent, these vivid moments of searching for and constructing meaning should not crowd out the quieter and less remarked upon reality of meaning when it is present. Meaning is often not a problem to be solved but an aspect of experience that is simply and intuitively present.

References

Table 1. Two sides of human information processing and meaning

<table>
<thead>
<tr>
<th>System 1 (Intuitive)</th>
<th>System 2 (Rational)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid, nonconscious</td>
<td>Analytical, effortful, intentional, slow</td>
</tr>
<tr>
<td>Gut feelings, hunches, heuristics</td>
<td>Logical operations and rules</td>
</tr>
<tr>
<td>Just knowing</td>
<td>Knowing and knowing why</td>
</tr>
<tr>
<td>Subjective</td>
<td>Objective</td>
</tr>
<tr>
<td>Facilitated by positive affect</td>
<td>Facilitated by negative affect</td>
</tr>
<tr>
<td>Default</td>
<td>Used when needed and to override System 1 impulses</td>
</tr>
<tr>
<td>Sensing sense</td>
<td>Making sense</td>
</tr>
</tbody>
</table>
Figure 1. Discrimination of sense from nonsense as a function of intuitive processing style and mood induction condition. (From Hicks et al., 2010; reproduced with permission).