

The Interdisciplinary Center, Herzlia
Efi Arazi School of Computer Science

Pseudo Random Num-
ber Generators in Pro-
gramming Languages

M.Sc dissertation

Submitted by Aviv Sinai

Under the supervision of Dr. Zvi Gutterman
(CloudShare, HUJI)

March, 2011.

i

Acknowledgments

First and foremost, I would like to thank my advisor, Dr. Zvi Gutterman, for the time
and effort he put into helping me complete this work.
I would like to express my deepest gratitude to Asaf Rubin, a friend and co-worker.
I’m grateful for his help and time spent assisting me in finishing this work.
I would like to also thank Danny Slutsky and Yaniv Meoded, who reviewed early
drafts of this work.
Special thanks to Dr. Anat Bremler and the IDC M.Sc. CS program office, for their
patience and help.
Finally, I want to thank my family who gave me the support I needed to invest pre-
cious time working to complete this work.

ii

Abstract

Software developers frequently encounter the need to integrate random numbers in
their systems and applications. Applications and systems that span from implement-
ing a new security protocol to implementing a shuffling algorithm in an online poker
game. Modern software languages come to their aid by providing them with a rich
SDK that contains pseudo random number generation functions for the developer to
use without the need to implement their own generators. These functions differ in
cryptographic strength and underlying algorithms used.

In this thesis we research the implementations of random number generators in
popular programming languages. We provide a complete and detailed analysis of the
algorithms used, cryptographic strength and capabilities of these generators. Our
analysis shƻǿǎ ǿŜŀƪƴŜǎǎŜǎ ƛƴ ǘƘŜ ƎŜƴŜǊŀǘƻǊǎ ƛƳǇƭŜƳŜƴǘŜŘΣ ƛƴŎƭǳŘƛƴƎ ŀ ōǳƎ ƛƴ /ІΩǎ
implementation of the additive feedback generator. In addition we provide a non-
trivial attack on the session generation algorithm in PHP that relies on our analysis of
PHPΩǎ ƎŜƴŜǊŀǘƻǊ.

iii

Table of Contents

ACKNOWLEDGMENTS ... I

ABSTRACT .. II

TABLE OF CONTENTS ... III

LIST OF FIGURES .. VI

1 INTRODUCTION ... 2

1.1 CONTRIBUTIONS ... 2
1.2 STRUCTURE AND OUTLINE .. 3

2 PSEUDO RANDOM NUMBER GENERATORS ... 4

2.1 THE IMPORTANCE OF RANDOM NUMBERS ... 4
2.2 WHAT IS A GOOD (PSEUDO) RANDOM NUMBER GENERATOR? ... 5
2.3 THEORY VS. PRACTICE .. 6
2.4 POPULAR PRNGS REVIEW .. 7

2.4.1 Linear Congruential Generator (LCG) .. 7
2.4.2 Multiplicative Congruential Generator (MRG/MCG/MLCG) 7
2.4.3 Combined MCG (CMCG/CMLCG) ... 8
2.4.4 LFSR (Linear Feedback Shift Register) .. 8
2.4.5 Lagged Fibonacci Pseudo Random Generators (LFG) 9
2.4.6 Generalized Feedback Shift Register (GFSR) .. 10
2.4.7 Twisted Generalized Feedback Shift Register (TGFSR)................................... 10
2.4.8 Mersenne Twister .. 11
2.4.9 Blum Blum Shub (BBS) ... 11
2.4.10 PRNGs in Standards ... 11

3 RELATED WORK ... 13

3.1 THE RANDU PRNG ... 13
3.2 NETSCAPE SSL ATTACK .. 13
3.3 PREDICTABLE SESSION KEYS IN KERBEROS V4 ... 14
3.4 ATTACK ON APACHE TOMCAT’S SESSION ID GENERATION ... 14
3.5 IDENTICAL NFS FILE HANDLES ... 15
3.6 ONLINE POKER EXPLOIT ... 16
3.7 LINUX RANDOM NUMBER GENERATOR (LRNG) ANALYSIS .. 17
3.8 WINDOWS RANDOM NUMBER GENERATOR (WRNG) ANALYSIS ... 18

4 ANALYSIS METHODS ... 20

4.1 NOTATIONS/JARGON ... 20
4.2 ASSUMPTIONS .. 20
4.3 COMMON ANALYSIS STRUCTURE .. 20
4.4 ATTACK VECTORS AND ATTACK ASSUMPTIONS .. 21

5 C .. 22

5.1 INTRODUCTION ... 22
5.2 MICROSOFT CRT (MSVCRT) GENERATORS... 23

5.2.1 (ANSI-C) C Standard Built-in Generators (rand() family) 23
5.2.2 rand_s() ... 25

5.3 *NIX GLIBC GENERATORS ... 26
5.3.1 Introduction ... 26
5.3.2 (ANSI-C) C Standard Built-in Generators (rand() family) 26

5.4 BSD C GENERATORS (RANDOM() FAMILY) ... 27
5.4.1 Introduction ... 27

iv

5.4.2 Design Space .. 27
5.4.3 G0: LCG .. 28
5.4.4 G1-G4: AFG .. 29

5.5 SVID C GENERATORS (RAND48() FAMILY) ... 33
5.5.1 Introduction ... 33
5.5.2 Design Space .. 33
5.5.3 Under the Hood ... 33
5.5.4 Properties Analysis .. 35

6 JAVA .. 36

6.1 INTRODUCTION ... 36
6.2 MATH.RANDOM ... 36

6.2.1 Design Space .. 36
6.3 JAVA.UTIL.RANDOM .. 36

6.3.1 Design Space .. 36
6.3.2 Under the Hood ... 37
сΦоΦо Properties Analysis .. 38

6.4 JAVA.SECURITY.SECURERANDOM ... 40
6.4.1 Introduction ... 40
6.4.2 Design Space .. 40
6.4.3 P1: MSCapi PRNG .. 42
6.4.4 P2: nativePRNG ... 42
6.4.5 P4: P11SecureRandom ς PKCS-11 implementation 45
6.4.6 tоΥ {ǳƴΩǎ default PRNG implementation: SecureRandom 45

7 C# (.NET) ... 52

7.1 INTRODUCTION ... 52
7.2 SYSTEM.RANDOM ... 52

7.2.1 Design Space .. 52
7.2.2 Under the Hood ... 53
7.2.3 Properties Analysis .. 54

7.3 SYSTEM.SECURITY.CRYPTOGRAPHY.RANDOMNUMBERGENERATOR .. 58
7.3.1 Design Space .. 58
7.3.2 Under the Hood ... 59
7.3.3 Properties Analysis .. 60

8 PHP ... 61

8.1 INTRODUCTION ... 61
8.2 LCG_VALUE() PRNG ... 62

8.2.1 Design Space .. 62
8.2.2 Under the Hood ... 62
8.2.3 Properties Analysis .. 63

8.3 RAND() PRNG ... 67
8.3.1 Design Space .. 67
8.3.2 Under the Hood ... 67
8.3.3 Properties Analysis .. 67

9 SUMMARY AND CONCLUSIONS ... 69

10 APPENDIX A: APPLICATION ATTACK: !¢¢!/Y hb tItΩ{ {9{{ION ID ALLOCATION 72

10.1 INTRODUCTION ... 72
10.2 SESSION ID ALLOCATION ALGORITHM ... 72
10.3 EXTRACTING THE STATE OF THE GENERATOR ... 73
10.4 MOUNTING THE SESSION HIJACKING ATTACK ... 74

11 APPENDIX B: CODE SNIPPETS .. 77

11.1 JAVA... 77

v

11.1.1 Java: SecureRandom .. 77
11.2 .NET .. 77

11.2.1 System.Random (Random.cs) .. 77
11.2.2 System.Security.Cryptography. RNGCryptoServiceProvider
(rngcryptoserviceprovider.cs) 81
11.2.3 win32pal.c ... 82

11.3 *NIX C ... 83
11.3.1 BSD .. 83
11.3.2 SVID ... 84

12 APPENDIX C: CONFIGURATION FILES ... 86

12.1 JAVA.SECURITY DEFAULT SECURITY FILE CONFIGURATION ... 86

13 BIBLIOGRAPHY .. 91

vi

List of Figures

Figure 1 SSL Handshake Protocol Illustration ... 5

Figure 2 LFSR Example ... 9

Figure 3 Netscape SSL Seeding Algorithm .. 13

Figure 4 Kerberos V4 Generator .. 14

Figure 5 Flawed Deck Shuffling Algorithm .. 16

Figure 6 LRNG Structure (taken from authors’ paper) .. 17

Figure 7 WRNG Main Loop – CryptGenRandom(Buffer, Len) 18

Figure 8 get_next_20_rc4_bytes() ... 19

Figure 9 deg, sep assignment per each flavor .. 29

Figure 10 AFG Algorithm Diagram .. 29

Figure 11 State Initialization Code (srandom function) 30

Figure 12 Rand48 Algorithm Code ... 34

Figure 13 Diagram of Translation from xsubi Array to the State Variable X 34

Figure 14 The State after Initialization Using srand48 .. 35

Figure 15 Math.Random random method code ... 36

Figure 16 java.util.Random API methods ... 36

Figure 17 java.util.Random default seed implementation 37

Figure 18 SecureRandom Class Diagram of Default Available SecureRandomSpi 40

Figure 19 SecureRandomSpi API methods ... 41

Figure 20 engineNextBytes(byte[] outBuf) pseudo code 43

Figure 21 engineSetSeed(byte[] seed) pseudo code ... 43

Figure 22 Seeding Generation Class Diagram ... 46

Figure 23 Sun's default generator .. 47

Figure 24 P3 default seed algorithm .. 48

Figure 25 P3 system entropy gathering .. 49

Figure 26 SG1 entropy gathering algorithm ... 49

Figure 27 System.Random API ... 52

Figure 28 System.Random initialization algorithm ... 53

Figure 29 Stepping the System.Random generator .. 54

Figure 30 Cycle Length Histogram .. 55

Figure 31 RandomNumberGenerator API .. 58

Figure 32 Output calculation of Z ... 62

Figure 33 MCGs initialization algorithm ... 63

Figure 34 PHP rand() default seed algorithm ... 67

Figure 35 Analysis Summary Table ... 71

file:///C:/Users/aviv/Documents/University/IDC/Project/Gutterman/Project_Docs/Project_Papers/PRNG_In_Programming.docx%23_Toc287467951

1

2

1 Introduction

1.1 Contributions

In this work we study the implementations, availability and security properties of Pseudo Random
Number Generators (PRNGs) in popular programming languages. The algorithms used are methodi-
cally presented in concise pseudo-code format with a thorough analysis of their security parame-
ters.

This work drives towards the goal that Knuth advised in [1]: άΧ ƭƻƻƪ ŀǘ ǘƘŜ ǎǳōǊƻǳǘƛƴŜ ƭƛōǊŀǊȅ ƻŦ
each computer installation in your organization, and replace the random number generators by
good ones. Try to avoid being too shocked at what you finŘΦέ Similar to these cautious lines from
Knuth we see in [2] while discussing a rand() implementation: άΧbƻǿ ƻǳǊ ŦƛǊǎǘΣ ŀƴŘ ǇŜǊƘŀǇǎ Ƴƻǎǘ
important, lesson in this chapter is: be very, very suspicious of a system-supplied rand() that resem-
bles the one just described. If all scientific papers whose results are in doubt because of bad rand()s
were to disappear from library shelves, there would be a gap on each shelf about as big as your
fist.έ

Most programming languages have several flavors of PRNG implementations for the program-
mer to choose from. The flavors differ in their security properties and sometimes also in their de-
sign and API.

This work has important practical and theoretical implications:
1. A PRNG is its own kind of cryptographic primitive, which all programming languages offer at

least one implementation of. A better understanding of these implementations will make it
easier to choose the correct implementation to use.

2. A PRNG is a single point of failure for many real-world cryptosystems. An attack on the
PRNG can make the careful selection of good algorithms and protocols irrelevant.

3. Many systems use badly-designed PRNGs, or use them in ways that make various attacks
easier than need be. Very little exists in the literature to help system designers choose and
use these PRNGs wisely.

4. Most developers don’t understand the difference between these primitives and tend to
choose their PRNG flavor wrongfully.

In this work we concentrate on the analysis of 4 very popular programming languages (as
claimed by the TIOBE Programming Community Index available in [3]): C (5), Java (Chapter 6), C#
(Chapter 7) and PHP (Chapter 8). For each programming language, we survey the relevant infor-
mation and papers that discuss the PRNG in that language. We then proceed to describe the exact
implementation, design and configuration options that are available in this language.

The appropriate API documentation for each language usually served as a first step in the analy-
sis. However, most of the documentation we encountered was extremely poor in its details of the
PRNG, and/or consisted of various inaccuracies. In order to gain further insight to the exact imple-
mentations, we used static code analysis techniques. In addition, in some programming languages
such as C#’s System.Security.Cryptography (Section 7.3), we were forced to reverse engineer the
code using commodity tools such as the IDA-Pro disassembler [4].

After understanding the exact implementation and algorithms used we analyzed the security
properties of the generators in a similar framework to which is described in [5] and [6].

For ease of reference for developers interested in the “bottom line”, we also provide a com-
plete summary table of the properties of each programming language and variant. The table can be
viewed in Figure 35.

While analyzing the security of the implementations we found a bug in the PRNG implementa-
tion in C#’s System.Random generator (Section 7.2.3.1) – the bug causes the generator to not have

3

the maximal period length. Under certain relaxations we continued to analyze this bug and demon-
strated concrete seeds that cause the generator to have an extremely short period of ς in its least
significant bit. We further found a non-trivial attack on one of PHP’s core PRNG generator.

We continued and showed an unpublished attack on the session generation mechanism in PHP
(see 10 for details). The attack utilizes an attack we found in lcg_value (see section 8.2.3.1), which is
one of the PRNG implementations that exist in PHP.

1.2 Structure and Outline

The rest of this work is structured as follows. In Chapter 2 we provide important background for
this work, surveying applicable theoretical Pseudo Random Number Generators and explaining the
properties of good PRNGs. In Chapter 3 we present the related work, which includes infamous
attacks of PRNGs and analysis results of Operating System based generators work that will be refer-
enced throughout this work. Chapter 4 comes to provide common context, language and the attack
vectors used to analyze each programming language. Chapters 5, 6, 7 and 8 contain the actual
analysis of the programming languages C, Java, C# and PHP, respectively. We present our conclu-
sions and a summary table of our results in Chapter 9. Chapter 10 (Appendix A) contains our attack
on the session ID generation in PHP and the rest of the Appendices are code extracted and/or used
throughout the analysis. Due to the immense amount of code reviewed in each analysis we only
present the code in the Appendices if reverse engineering (or other de-compilation methods) were
needed to extract the code or if the code implementation didn’t seem straight-forward to us.

4

2 Pseudo Random Number Generators

Real random number generators are hard to come by. These generators often require having spe-
cialized hardware and use physical sources such as thermal noise in electrical circuits or precise
timing of Geiger counter clicks [7,8,9,10]. Due to this, most applications that require random bits
use a cryptographic mechanism, called a Pseudo Random Number Generator (PRNG), to generate
the (pseudo) random numbers.

In this chapter we discuss the importance of random numbers and provide some examples of
the use of random numbers in popular applications. We continue to discuss the distinction between
theory and practice in section 2.3 and finish with a survey of popular PRNGs in section 2.4.

2.1 The Importance of Random Numbers

Random numbers are prevalent in many computer science applications. These applications include
network protocols design (e.g., TCP sequence number [11]), algorithmic research (e.g., random
algorithms), various unique identifiers (e.g., UUID [12]) and security protocols (e.g., TLS [13]). Ran-
dom numbers are considered a basic building block in almost every cryptographic scheme (e.g., RSA
[14]).

Having a secure source of random numbers is a critical assumption of many protocol systems.
There have been several high profile failures in random numbers generators that led to severe
practical problems. Perhaps the most renounced one was in the Netscape implementation of SSLv2
(3.2) in 1996. For an overview of popular PRNG based attacks, please refer to 3.

SSL as an example of random numbers importance: The SSL protocol, which was originally de-
veloped by Netscape, is one of the basic building blocks that allow the Word Wide Web to function
as we know it. E-commerce sites use SSL to secure online transactions; banks use SSL in order to
secure sensitive communications of their clients and their servers; popular hosted solutions, such
Google’s Gmail (www.gmail.com), use SSL to secure their communications and many others. One
can’t even fathom the repercussions if security flaws in the implementation (or design) of the SSL
protocol are to be found.

The security of SSL, as in many other security schemes, depends on the attacker not being able
to predict the secret key of the scheme. Thus it is vital that this secret key would be derived from an
unpredictable random source. Random numbers are used in several places in the SSL protocol.
Random nonces are created during the Handshake Protocol and passed in the Client Hello and
Server Hello messages. These nonces are important inputs to prevent replay attacks and are also
used in deriving the future keys used for encryption. Most importantly, random numbers are used
during the creation of the pre master secret that is sent by the client to the server during the Key
Exchange phase in the handshake protocol (this actually serves as a secret key between the par-
ties). Using weak random numbers in SSL would have the protocol crumble down.

An illustration of the SSL handshake protocol can be viewed in Figure 1 below.

5

Figure 1 SSL Handshake Protocol Illustration

1

2.2 What is a Good (Pseudo) Random Number Generator?

As noted earlier, obtaining randomness on a computer is not an easy task as a Turing machine is, by
definition, deterministic. Generating real random numbers often involve having specialized hard-
ware that is sensitive to physical bias, which needs post-processing tasks to remove this bias. Due
to these, most applications use Pseudo Random Number Generators implemented in software
when in need of random values.

We continue with definitions of PRNG by re-phrasing a bit some of the definitions available in
the Handbook of Applied Cryptography [15].

Definition 1 (PRBG): A Pseudo Random Bit Generator (or PRBG) is a deterministic algorithm
which, given a truly random binary sequence of length Ὧ, outputs a binary sequence of length ὰḻὯ
ǿƘƛŎƘ άŀǇǇŜŀǊǎέ ǘƻ ōŜ ǊŀƴŘƻƳΦ ¢ƘŜ ƛƴǇǳǘ ǘƻ ǘƘŜ tw.D ƛǎ ŎŀƭƭŜŘ ǘƘŜ ǎŜŜŘΣ ǿƘƛƭŜ ǘƘŜ ƻǳǘǇǳǘ ƻŦ ǘƘŜ
PRBG is called a pseudorandom bit sequence. The initial random input of length Ὧ is referred to as
the seed of the generator.

The purpose of PRNGs is to take a small real random sequence and expand it to a sequence of
much larger length; in such a way that an adversary cannot efficiently distinguish between output
sequences of the PRBG and truly random sequences of length ὰ.

Definition 2 (SPRNG): A PRNG whose output cannot be distinguished from a true random output
by a polynomial time algorithm is a Secure PRNG (SPRNG).

Random numbers are used in many applications; each implementation may have different re-
quirements from its PRNG. Consider the need of having random numbers for simulations purposes -
here the basic need for the random numbers is to have good (uniform) statistical properties. How-
ever, for instance, it is alright for the sequence to repeat itself from one simulation run to another.
It is even important that the user can repeat simulations easy. This is, obviously, not the case with
cryptographic systems.

1
 Illustration taken from Prof. Amir Herzberg “Introduction to secure communication and E-Commerce” lecture

notes available at https://sites.google.com/site/amirherzberg/introductiontosecurecommunicationandcomm

https://sites.google.com/site/amirherzberg/introductiontosecurecommunicationandcomm

6

In this thesis we are interested in the requirements of a PRNG from a cryptographic perspec-
tive. We continue to outline these requirements using common terminology coined in [5], which
being a SPRNG is only one of them.

A PRNG must be secure against external and internal attacks. The attacker is assumed to know
the code of the generator, and might have partial knowledge of the entropy used for refreshing the
generator’s state. Furthermore, the attacker might have the ability of compromising the internal
state for a limited time. The Security requirements of a PRNG are:
Á Pseudo-randomness. The generator's output should seem random to an outside observer. This

requirement is identical to the definition of an SPRNG. Even if the attacker is given all the out-
put, the attacker can’t be able to efficiently guess the next bit of the output.

Á Forward security (or Backtracking Resistance). An adversary who learns the internal state of
the generator at a specific time cannot learn anything about previous outputs of the generator.
This requirement is easily met if the generator is a one way function.

Á Backward security (or Prediction Resistance). An adversary who learns the state of the genera-
tor at a specific time does not learn anything about future outputs of the generator, provided
that sufficient entropy is used to refresh the generator's state. The only means to use in order
to meet this requirement is to periodically have the generator’s state refreshed with new en-
tropy.

2.3 Theory vs. Practice

A correct implementation of a PRNG is crucial. The design of the security protocol could be flawless;
however an incorrect or weak implementation of the PRNG could cause the whole design to fail.
Despite the fact that there are secure proven PRNGs for almost thirty years such as written in
[16,17], many security protocols implementations are implemented with weak and vulnerable
generators.

So the obvious question is why do we still suffer with so many inadequate generators used and
implemented? (For some famous attacks and bugs on PRNGs the reader is encouraged to refer to
chapter 3) In our opinion, the major reasons for this are:

1. Performance – as in the case of many theoretical concepts – when coming to implement an
algorithm there are performance considerations and problems that are not always account-
ed in theory. Consider for example the generator by Blum, Blum and Shub [17], described in
section 2.4.9. The generator’s security is based on the difficulty to factor semi-prime num-
bers. However the algorithm itself is very CPU intensive, thus yielding in very few implemen-
tations actually using this generator.

2. Attacks Due to Ecosystem – many of the PRNGs described rely on sound mathematical basis
and are usually even described as mathematical equations. However many attacks don’t
happen due to the fact that theoretical ground of the algorithm is shaky, but due to other
practical considerations such as adhering to a specific API, meeting coding standards or de-
sign goals of the entire ecosystem.

3. Level of Expertise - most developers aren’t versed in the field of Cryptography, nor are they
aware of the potential delicacies in the field. Nevertheless, most developers would probably
encounter during their career the need for generating random numbers. A poor choice of an
API function might result in major security problems.

One of the main purposes of this work is to aid developers overcome the reason stated in Arti-
cle 3 above in understanding the strength of each PRNG offered to them in their programming
language of choice. This in turn would hopefully decrease the probability of choosing a PRNG im-
plementation that is too weak for the application.

7

One of the most famous books that try to deal with the lack of expertise claimed above is the
book Writing Secure Code, published in 2002 by Microsoft’s Michael Howard and David LeBlanc
[18]. In this book the authors take the time to discuss the proper way of using the random genera-
tors available in Microsoft run-time libraries. Most importantly they suggest not using some of the
weaker variants in cryptographic sensitive application. The reader is encouraged to read chapter 8
in the book for more details.

2.4 Popular PRNGs Review

In this section we review the theoretical principles, algorithms and properties of PRNGs that are
mostly based on algebraic concepts, and are used as building blocks for the PRNGs implementa-
tions in various programming languages. We will use this review as reference when stating the
theoretical PRNG of each implementation in applicable analysis sections.

2.4.1 Linear Congruential Generator (LCG)

Probably the most famous and popular PRNG implemented today; we found this type of generator
in almost every programming language covered as one of the basic generators available. It is based
on the scheme introduced by D. H. Lehmer in 1949 [19].

LCG is based on the following recurrence:

ὢ ὥὢ ὧάέὨ άȟ ὲ π

Where a, c and m are constants, and ὢ is the seed.
Choice of a, c and m: in order to guarantee a full period of □ care must be taken when choos-

ing these parameters. Knuth [1] has a detailed discussion of the properties that these parameters
should meet. We summarize his recommendations here:

1. ὧ and ά should be relative primes.
2. ὦ ὥ ρ should be divisible by all prime factors of m.
3. ὦ should be a multiple of 4 if m is a multiple of 4.

2.4.2 Multip licative Congruential Generator (MRG/MCG/MLCG)

An MCG (Multiplicative Congruential Generator) is an LCG that has ὧ π in its recurrence. Accord-
ing to [1] this was actually Lehmer’s original generation method, although he did mention ὧ π as
a possibility.

The random number generation of this generator is slightly faster in this case; we note that this
generator doesn’t satisfy recommendation 1, thus it can’t achieve the full period. Here we want
ὢ to be relatively prime to ά for all ὲ, and this limits the length of the period to at most ⱦά , the
number of integers between π and ά that are relative prime to ά.

Knuth discusses the maximum period of this generator in depth and provides the settings need-
ed in order to achieve this period. In order to reach a maximum period of ⱦ□ , where ‗ά is
defined below, the following settings should exist:

1. ὢ is relatively prime to ά.
2. ὥ is a primitive element modulo ά.

‗ς ρȟ ‗τ ςȟ ‗ς ς ὭὪ Ὡ σȢ
‗ὴ ὴ ὴ ρȟ ὭὪ ὴ ς

‗ὴ ȣὴ ὰὧά‗ὴ ȟȣȟ‗ὴ

Knuth notes that when □ is a prime, we can reach a period of ά ρ, which is only 1 less than the
maximum period if we were to use an LCG with ὧ π.

8

2.4.3 Combined MCG (CMCG/CMLCG)

There were various attempts in combining several LCGs in order to construct a new PRNG. The
results are PRNGs with larger period and sometimes perform better in some randomness tests,
however pose no cryptographic advantage.

We will examine a specific attempt introduced by L’Ecuyer in [20]. The generator is intended to
be efficient and portable. His paper discusses the general theory behind the generator and also
introduces two new generators, one for 32 bits based machines and one for 16 bits based ma-
chines.

The concrete generator suggested for 32 bits based machines is:

MLCG1:
ί ί ὥz άέὨ ά ί τzππρτ άέὨ ς ψυ

MLCG2:
ί ί ὥz άέὨ ά ί τzπφως άέὨ ς ςτω

Combined MLCGs:
ᾀ ί ί άέὨ ά ρ ί ί άέὨ ς ψτ

This combined generator achieves a period of ὴ
ᶻ

ḙ ḙςȢσz ρπ.

This generator works as long as the machine can represent all integers between ς
ψυ ὥὲὨ ς ψυ.
L’Ecuyer’s paper elaborates regarding how to implement this generator in a portable manner on

different machines. In [21] Schneier provides the exact C code of implementing this generator.

2.4.4 LFSR (Linear Feedback Shift Register)

Linear Feedback Shift Register (LFSR) is a shift register whose input bit is a linear function of the
previous state. Linear Feedback Shift Registers are prominent building blocks in many cryptographic
fields, such as stream ciphers. They are often liked due to the fact they are easy to implement in
hardware, produce sequences of large period, have good statistics properties and can be analyzed
using algebraic techniques.

An LFSR is comprised of three parts: a shift register, a linear feedback function and a clock
which times when the shift occurs. The shift register is a sequence of ▪ bits (in this case we refer to
this shift register as an ὲ ὦὭὸ shift register).

Each time an output bit is needed, the generator is stepped by shifting all the bits 1 position to
the right. The new left-most bit (the new input bit) is computed as a function of the other bits in
the register. The output bit is the bit in stage 0 (the lsb). The feedback function is the XOR function
(the only linear function of single bits) of certain bits in the register; these bits are called the tap
sequence.

The tap sequence is represented by a polynomial of the form Ὃὼ ρ ὧὼ ὧὼ Ễ

ὧὼ where ὧ‭πȟρȟρ Ὥ ὲ. If ὧ ρ then the Ὥ stage is in the tap sequence. This polynomial
is also referred to as the connection polynomial.

Figure 2 shows an example of an LFSR whose connection polynomial is ρ ὼ ὼ.

9

Figure 2 LFSR Example

Maximal Period: the LFSR can result in very long periods; the maximal period of an LFSR is

▪ and it is reached only when its connection polynomial Ὃὼ is a primitive polynomial over
ὤ and the initial state is not all zero. These LFSRs are called maximum-length LFSRs or maximal-
period LFSRs. The output of a maximum-length LFSR with non-zero initial state is called an m-
sequence.

Algebraic form: considering the state of the generator also as a polynomial, much like was
shown in the connection polynomial, however here each state bit, ὦ, represents an applicable
coefficient in the polynomial. Let Ὓὼ be this polynomial; then stepping the generator is equivalent
to multiplying by x modulo G(x), i.e., calculating ὼὛὼάέὨ Ὃὼ.

Schneier [21] surveys numerous PRNGs (and stream ciphers) that use different LFSR and LFSR
combinations.

2.4.5 Lagged Fibonacci Pseudo Random Generators (LFG)

Subtractive random number generator algorithm: this is the suggestion by Knuth [1] (pp. 171-173)
for a portable, efficient generator. The emphasis was on a portable generator that only uses integer
arithmetic between ρπ ÁÎÄ ρπ. The generator is based on the following subtractive recursion:

ὢ ὢ ὢ άέὨ άȟ ὲ π

Knuth argues that the exact value of m is irrelevant; however it does have to be with big magni-
tude and even. The value suggested by Knuth is ά ρπ.

There are several implementations for this generator. Knuth offers an implementation in
FORTRAN in his book. There is also an implementation in C described in [2], named ran3.

A generalization of the generator introduced by Knuth is a Lagged Fibonacci Generator since it
is a generalization of the Fibonacci sequence. These generators use an initial sequence ὼȟὼȟȣȟὼ

and two “lags”, Ὦ and Ὧ.
The recursion of this generator is:

ὢ ὢ Α ὢ άέὨ άȟ π Ὧ Ὦȟ ὲ Ὦ

The elements are computer words and ‘ϷΩ (the binary operation) is a general binary operation,
which can be subtraction, addition, multiplication or the bitwise arithmetic XOR. For addition or
subtraction, the ὼ’s are either integers άέὨ ς or reals mod 1. For multiplication, odd
gers άέὨ ς.

Period: in [22] Marsaglia shows the maximal period of this generator depending on the binary
operation shown, while assuming that the modulus used is a power of 2. In [23] we see a good
summary of this maximal period, assuming that Ὦ ὥὲὨ Ὧ are chosen properly and ά is defined as

Shift

b0b1b2b3 output

10

ά ς (w being the machine word size). We follow with the summary regarding this maximal
period:

$ (Operation) Maximal Period

ṥ ς ρ
 άέὨ ά ς ς ρ

 zάέὨ ά ς ς ρ
Table 1 Maximal Period

2.4.6 Generalized Feedback Shift Register (GFSR)

Introduced by Lewis and Payne in 1973 [24]; the general idea is to use the ability of the CPU to
apply the XOR operation on words. This can be used to run w LFSRs in parallel, where w is the size
of the machine word. Another point of view of this generator is to consider it as an LFG with the
operation, $, taken as the bitwise XOR operation.

Each LFSR can be considered as one of w independent channels. The GFSR recurrence follows:

ὢ ὢ ἅ ὢ ȟ ὲ ὴȟὴ ρȟȣ

Where ὢ ᶰπȟρ ȟὲᶰὔ, ὼ ὼ ρ is a primitive polynomial and p and q are constants, p > q.
One should take care with the initialization of the generator. In [24] Lewis and Payne suggest an

initialization method which gives the sequence some desirable statistical properties.
The main merits of this generator are:
1. The generator is fast. Generation involves few machine operations per generator step.
2. The generator can achieve an exceptional long period, without dependence of the machine

word size. If p and q are chosen properly the generator achieves a period of ς ρ.
3. The implementation is portable, i.e., is independent of the machine word size.

In [22] Marsaglia wonders why this generator has been given such serious consideration due to the
fact that generators with addition or subtraction as the chosen binary operation have better statis-
tical properties and longer periods. In [25] we have a good overview of the drawbacks of this gen-
erator:

1. The initialization process of choosing the initial values is critical. Good initialization is rather
costly.

2. The generated sequence per channel is known to have poor randomness properties.
3. Although the generator can achieve a long period of ς ρ, it is shorter than the theoretical

upper bound period of ς (i.e., the number of states possible). In order to achieve a de-
sired cycle length of ς ρ, the generator requires a memory of p words.

2.4.7 Twisted Generalized Feedback Shift Register (TGFSR)

Twisted Generalized Feedback Shift Register (TGFSR) [25,26] addresses all the drawbacks of GFSR: it
achieves a period of ς ρ and removes the dependence of a carefully initialized sequence.
Furthermore, it doesn’t necessary need the polynomial to be a trinomial.

The recurrence of a TGFSR follows:

ὢ ὢ ἅ ὢ ὃȟ ὲ ὴȟὴ ρȟȣ

Where ὢ ᶰπȟρ ȟὲᶰὔ, ὼ ὼ ρ is a primitive polynomial, ὃ is the twisting matrix, p
and q are constants, p > q. We regard ὢ as a row vector and matrix multiplication is done modu-

lo 2. The multiplication by A is called a “twist”.
This generator solves the above problems of GFSR:

11

1. Neither special initialization process nor precautions are needed. This is due to the fact that
unlike the GFSR, this system is not composed of many independent systems (i.e., many
LFSRs) but of one unit is which all bits affect each other.

2. The usage of the “twist” with a carefully chosen A improves the randomness property of this
system.

3. With a proper choice of A the system achieves the maximal period, i.e., ς ρ (achieves
all possible states except the zero state). This means that a desired period can be achieved
with the minimal needed size of internal state.

4. This generator has the property of p-equidistribution, which means that any non-zero se-
quence of p words appears with the same frequency as the output sequence.

2.4.8 Mersenne Twister

Mersenne Twister [27] is an improved variant of the original TGFSR. It achieves a very long period of
ς ρ and extremely good statistical properties while still being very efficient. Its name derives
from the fact that its period length is a Mersenne prime.

2.4.9 Blum Blum Shub (BBS)

Most of the PRNGs we’ve covered until now were mostly intended to be used in simulations and
other statistical purposes. In order to provide good PRNGs for cryptographic purposes, special
PRNGs were constructed. Despite the fact that we didn’t encounter any programming language
that has an implementation for cryptographic PRNGs that are not Operating System based we’ll
describe one of the most popular ones here.

Blum Blum Shub (BBS) [17] is a generator whose security properties are based on the computa-
tional difficulty of integer factorization. The biggest caveat of this generator is that it is very slow.
Following this, it is not appropriate for high performance environments and simulations.

The recurrence of BBS follows:

ὢ ὢ άέὨ ὓ

Where ὓ ὴή is the product of two large prime numbers that are congruent to σ άέὨ τ. The
pseudo-random sequence generated by this generator is the sequence of bits ὦὦȣ obtained by

setting ὢ ὢ άέὨ ὓ and extracting the bit ὦ ὴὥὶὭὸώὢ . The seed ὢ should be an Inte-
ger that is not 1 or divisible by ὓ. Usually the parity is taken to be the least significant bit.

The generator is secure as long as the factoring problem remains hard.

2.4.10 PRNGs in Standards

Recently, there have been some attempts to standardize the implementation of pseudo random
number generators. The most comprehensive standard is NIST’s Special Publication 800-90 [28]
that exclusively addresses the need of generating pseudo random numbers. Another notable
standard that describes concrete PRNG implementations exists in Appendix 3 of the FIPS-186 DSS
(Digital Signature Standard) [29]. We will briefly describe the key components of each standard.

2.4.10.1 NIST 800-90

This publication is a relatively new publication. This standard is the basis of the new Windows Ran-
dom Number Generator that is implemented in Windows versions higher than Windows Vista SP1.
This Standard has complete details of what is the design of a deterministic random bit generator
(DRBG), how to deal with errors, when to reseed, which seed sources to use, requirement of the
ability to “personalize” a random stream etc.

12

The algorithms presented there are analyzed using similar security properties that were men-
tioned in 2.2. Furthermore, per each recommended generator they present detailed guidance
regarding maximum requests between reseeds, maximum entropy inputs and more.

They present algorithms that are based on hash functions such as SHA-1 and HMAC as the gen-
erator function, generators that are based on block ciphers such as AES [30] and generators that
are based on number theoretic problems such as dual ecliptic curves. Dan Shumow and Neils Fer-
guson, in [31], showed a backdoor in the latter.

2.4.10.2 FIPS-186 DSS

Unlike NIST’s 800-90 standard this publication doesn’t solely address the objective of generating
random numbers. This standard describes the DSS (Digital Signature Standard) implementation;
however for proper implementation of DSS, random numbers are needed. This standard addresses
this need by suggesting a pseudo random number generator based on SHA-1 [32] in Appendix 3 of
the document.

The Standard presents two PRNG implementations: one that is based on SHA-1 and another
that is based on DES [33]. The former is the basis for the previous version of the Windows Random
Number Generator that is described in section 3.8. The algorithm uses a one-way function G(t, c),

where t is 160 bits, c is b bits (160 ̸ b ̸512) and G(t, c) is 160 bits. The algorithm also optionally
supports a user provided input. In the original publication, the PRNG was specifically described to
be used with the DSA (Digital Signature Algorithm); however in a change dating October 5th 2001,
the authors also provided a general purpose variation of the algorithm.

In [34] we see a cryptanalysis of the DSS algorithm in case an LCG PRNG was used.

13

3 Related Work

There is much published on the topic of pseudo random number generators. In this section we’ll
describe some important related work of analysis and attacks of popular PRNGs. A very good over-
view of PRNG bugs and suggestion for a secure construction is written by Peter Gutmann [35].
Schneier and Kelsey [6] have a good enumeration of different attack vectors against PRNGs. The
links in [36] comprise a thorough list of references that relate to cryptographic PRNGs.

Two of the most important analyses that we’ll show are the analyses of the Linux Random
Number Generator and the Windows Random Number Generator. We will refer to these works in
this paper whenever we’ll show that an implementation uses an OS (Operating System) based
generator. Due to the fact that our work mostly targets software developers we will also describe
popular attacks on software systems and applications that had an ill-implemented or ill-designed
PRNG.

3.1 The RANDU PRNG

One of the most infamous PRNGs ever designed. This generator was available as a scientific subrou-
tine for the IBM Mainframe computer (System/360 computer) since the early 1960s and its use
soon became widespread.

This PRNG had extremely bad statistical properties due to the ill parameters chosen to imple-
ment it. Kunth has a thorough discussion in [1] (pp. 104) regarding this generator and refers to this
generator as άΧǊŜŀƭƭȅ ƘƻǊǊƛōƭŜέ mentioning that this generator had actually been used on applicable
machines for about a decade and saying that άΧƛǘǎ ǾŜǊȅ ƴŀƳŜ w!b5¦ ƛǎ ŜƴƻǳƎƘ ǘƻ ōǊƛƴƎ ŘƛǎƳŀȅ
into the eyes and stomach of many computer scientists!έ

The generator is defined by the following recursion:

ὢ Ὥί έὨὨȟ ὢ φυυσωὢ άέὨ ς

This is an MCG with badly chosen parameters, thus not achieving the full expected period and has
some very distinctly non-random characteristics.

Much was then studied regarding the choice of parameters for an MCG and specifically the pa-
rameters in the RANDU generator; most notably is the work of Marsaglia in [37], the work of Knuth
in [1] and the comprehensive analysis conducted in [38].

 The ramifications of the statistical problems discovered in this generator were tremendous.
Some2 even say that due to the widespread of this generator much research during the 1970s in
fields that needed random numbers (e.g., simulations) is less reliable than it might have been.

3.2 Netscape SSL Attack

As mentioned in 2.1, SSL’s security relies heavily on random numbers – the secret key, master
secret, is generated using a PRNG. In 1996 [39] a weakness in this PRNG’s seeding process as im-
plemented in the Netscape browser’s was discovered.

The seeding process of the PRNG that was used in Netscape’s SSL implementation as described
in [39] follows:

1 (second s, microseconds) = time of day; /* Time elapsed since 1970 */
2 pid = process ID; ppid = parent process ID;
3 a = mklcpr(microseconds);
4 b = mklcpr(pid + seconds + (ppid << 12));
5 seed = MD5(a, b);

Figure 3 Netscape SSL Seeding Algorithm

2
 http://en.wikipedia.org/wiki/Pseudorandom_number_generator#Problems_with_deterministic_generators

http://en.wikipedia.org/wiki/Pseudorandom_number_generator#Problems_with_deterministic_generators

14

Effectively, the seeding entropy sources are the time of day (seconds and microseconds parts),
current process id (pid) and parent process id (ppid). The functions mklcpr and MD5 are shown only
for completeness of the code but have no security significance.

The authors attack these entropy sources in the following manner:
1. seconds – easiest to find out; our attacker could use a sniffing tool to guess the seconds

component.
2. microseconds – relatively easy to guess using brute force since there are only ρπḙς mi-

croseconds in a single second.
3. pid, ppid – If we assume that our attacker has access to the attacked machine, we can as-

sume she can see these variables (e.g., using the ps command on a *NIX machine). If we as-
sume that our attacker doesn’t have access to the attacked machine we need to make some
more observations: First we observe that due to the shift operation showed in line 4 in the
pseudo-code we have only 27 unknown bits, which is not the theoretical value of 30 un-
known bits since p/pid on *NIX machines is 15 bits long. The authors continue to narrow this
down by observing that ppid is usually just a bit smaller than pid or even has a constant val-
ue of 1 (the init process); this leads to pid and ppid having just slightly more than 15 bits of
entropy. Last, process information can often leak from applications, thus contributing to the
fact that this is not a good secret.

This gets us to an efficient attack of between 20 to 47 bits of the seed’s information. Netscape
fixed this vulnerability in the new version of its browser.

3.3 Predictable Session Keys in Kerberos V4

Kerberos [40] is a security protocol designed to allow entities communicating over a non-secure
channel to provide their identity in a secure fashion.

Kerberos relies on a trusted party called Key Distribution Center (KDC) that is responsible for
maintaining a database of secret keys per each entity in the network. This secret key is only known
to the client and to the KDC and is based on a shared secret (e.g., password) between the two. The
KDC then uses session keys to provide the client of tickets to services that she is eligible to use.
These tickets are used in the remaining of the protocol when interacted with the Service Server
(SS).

As shown in [41] , the (session) key generation algorithm used in version 4 of the protocol was
flawed and allows prediction of these session keys. Much like in the Netscape attack (section 3.2)
the flaw was in the seeding algorithm of the PRNG. The initialization was based on the time of day,
process ID and machine ID, which have very limited entropy resulting in an applicable brute force
attack. The pseudo code of the generator used is shown in Figure 4.

1 srandom(time.tv_usec ^ time.tv_sec ^ getpid() ^ gethostid() ^
 counter++) ;
2 key=random();

Figure 4 Kerberos V4 Generator

3.4 !ÔÔÁÃË ÏÎ !ÐÁÃÈÅ 4ÏÍÃÁÔȭÓ 3ÅÓÓÉÏÎ)$ Generation

Gutterman and Malkhi [42] published an analysis and concrete attack of the session ID generation
in the Apache Tomcat [43] Java servlet container implementation.

To better understand the implications of their result, some background is needed: HTTP is a
stateless protocol – this makes the protocol relatively easy to implement and contributed greatly to
its huge popularity. Due to this property, mechanisms that allow stateful browsing were created;
two of them are the cookie mechanism and URL rewriting. This stateful browsing is what allows

15

websites to save our shopping carts when we buy online, save our customer preferences, personal-
ize our browsing experience and more.

A special cookie is the session cookie, in which a web server typically sends a cookie containing
a unique session identifier. This unique session identifier has to be randomly chosen to not allow
others to impersonate us. The technical term for an attack where an attacker impersonates an
eligible user by impersonating her session is called session hijacking.

The authors found a weakness in the seed implementation of the PRNG used to generate ses-
sion IDs in Apache’s Tomcat server. The weakness that they found holds even if the implementer
decided to use the more secure Java PRNG java.security.SecureRandom.
The attack showed that the amount of random bits of the seed used isn’t as big as expected.

They showed that the seed was constructed from a timing based parameter, the system time in
millisecond, and from the toString() value of org.apache.catalina.session.ManagerBase.java. They
continued to show that the toString()’s unpredictability was reduced to the unpredictability of the
returned value of hashCode(). On Windows machines the hashCode() implementation uses an LCG
to generate the hash-code value. They showed that this value doesn’t add more than 8 unknown
bits to the seed.

Their final result is that the amount of unknown bits we have in the seed ranges from 32 to 43
bits. Another contribution of this work is a novel approach of space-time [44] tradeoff to effectively
attack PRNGs, which was demonstrated on the attack above.

Their attack procedure was that with the usage of Space-Time tradeoff the attacker guesses all
the bits of the seed and matches the result to real session-ids. After matching, the attacker recovers
the state of the PRNG and from now on she is synched with the generator’s state allowing her to
easily hijack sessions.

3.5 Identical NFS File Handles

An infamous example of a programming bug in the seeding process of the PRNG used to generate
NFS (Network File System) file handles in the Sun OS NFS implementation, the attack is described in
[45].

We will start and briefly explain what NFS handles are and why they need to have random
properties. NFS is a protocol originally developed by Sun in 1984 that allows a user on a client ma-
chine to access files that reside on a different machine (server) over the network in a similar way to
accessing files on the local storage/machine.

When a client wishes to access a remote file on the server machine it sends a request with the
desired NFS file handle to the server. This NFS file handle is the identification of the object that the
client wishes to access. The client receives this handle in the first time he wishes to access this
object, by using the mount request. The server checks that the client has permissions to access this
file system and returns the handle, if permission is granted.

Every client that has a valid file handle can interact with the NFS server, while checks are mostly
done during the mount operation. In order to make sure that clients go through the mount opera-
tion, where permissions are checked, the file handles are random to prevent malicious clients
guessing a valid file handle.

Whenever a file system is created a program called fsirand is run to initialize the file handles
with pseudo random values. This implementation initialized the generator with the process ID of
the initializing process and the time of day. Due to an implementation bug, the time of day value
was never initialized. This meant that the time of day variable contained predictable garbage val-
ues, depending on the system architecture used. Effectively only the process ID was used for the
initialization of the generator. This process ID was also highly predictable, as most deployments

16

used the suninstall installation procedure to install the initialization program, thus having the same
(predictable) process ID.

The result is that many systems ended up using identical NFS file handles. Venema, in [45], de-
scribed this as “Every other house in the street did have the same keys to the front door”.

3.6 Online Poker Exploit

Another good example of a programming error in the usage of a PRNG that led to crumbling of an
entire application is seen in [46]. The authors demonstrated an exploit of the shuffling algorithm
used in an online poker application by The Planet Poker Internet cardroom
(http://www.planetpoker.com).

The authors analyzed the algorithm used in the application to shuffle the deck of cards before
each round of Texas Hold’em Poker. The algorithm was published by the software company who
developed the algorithm as to show that indeed their algorithm is fair. Their published algorithm
follows in Figure 5 Flawed Deck Shuffling Algorithm. The code was implemented in the Pascal pro-
gramming language [47].

1 // Initialize the deck of cards
2 for ctr in 1..52 do
3 cards[ctr] = ctr;
4 end
5
6 randomize; // initialize the PRNG based on system clock
7
8 // Randomly rearrange each card
9 for ctr in 1.. 52 do
10 rnd = random (51) +1;
11 tmp = cards[rnd];
12 card s[rnd] = cards[ctr];
13 card s[ctr] = tmp;
14 end

Figure 5 Flawed Deck Shuffling Algorithm

The authors showed bugs in the above algorithm that harm the equal distribution of the shuf-
fled deck of cards. Bugs such as the fact that the current card would never be allowed to be
swapped with the last card in the deck (ctr=52). This is due to the fact that rnd in line 10 would
never get to the value of 52. This is because that Pascal’s random(n) returns a value between 0...(n-
1). While this indeed harms the equal distribution of the shuffled deck, the exploit that allowed
them to entirely break the application came from the PRNG usage. We follow with an explanation
of this exploit.

First they observed that the number of permutations in a deck of cards is equal to υςȦḙς .
However the state of the PRNG used is 32 bits long, thus it has only ς states. They reduced the
search space even more by observing that randomize initializes the seed with the amount of milli-
seconds that passed since midnight. This reduced the search space even further to ψφȟτππȟπππḙ
ς (number of milliseconds in a day). The final nail in the coffin was their final exploit.

By synchronizing the clock of their attack machine and the Poker server they were able to re-
duce the attack space to a mere ςππȟπππ. This is a trivial search space and after a couple of seconds
on a regular PC and after seeing just 5 cards in the round they were able to synchronize with the
PRNG. From here on now, the application was broken as they knew exactly which card every player
got.

The authors further gave recommendations on how to fix the algorithm by using a simpler algo-
rithm, switching to a PRNG with a larger state and not using the system clock as the seed.

http://www.planetpoker.com/

17

3.7 Linux Random Number Generator (LRNG) Analysis

Linux has gained popularity in the last few years in various verticals; most notably in the Super
Computer vertical it has a whooping share of 91% [48]. In 2006, Reinman, Gutterman and Pinkas
[49] published a comprehensive analysis and a new attack on the forward security of the PRNG
used in the Linux kernel (LRNG). We will briefly summarize the structure and algorithm of this gen-
erator as described in their paper and their attack results.

The LRNG is an entropy based PRNG [50] which is comprised of three asynchronous stages: (1)
Various operating system entropy is gathered from operating system accessible sources, (2) the
entropy is added into a TGFSR-like pool using a mixing function, (3) the random bits are extracted
from the applicable random pools.

The internal state of the generator is kept in three pools: primary, secondary and urandom,
whose sizes are 512, 128 and 128 bytes, respectively. Entropy collected in stage (1) is added only to
the primary pool and random bits are extracted from either the secondary or the urandom pool.
When necessary, entropy is added from the primary pool to the secondary and urandom pools.

In order to estimate when entropy is needed to be added, either to the primary pool or the
other two, the implementation holds an entropy estimation counter per each pool. These counters
hold how many bits that are considered random currently exist in the applicable pool.

Figure 6 LRNG Structure όǘŀƪŜƴ ŦǊƻƳ ŀǳǘƘƻǊǎΩ ǇŀǇŜǊύ

Figure 6 (taken from the LRNG paper [49] page 5) describes the flow and structure of the LRNG.

The C stands for collection of entropy from the various entropy sources. The A stands for addition
of entropy to each of the pools. E stands for extraction of either entropy from the primary pool or
extracting random bits using one of the applicable devices. The dotted line represents a feedback
that occurs whenever entropy is extracted from a pool.

There are two devices for extracting random bits from the generator. One is /dev/random,
which is a blocking interface. If one tries to extract random bits from this device, while the entropy
estimation for its pool (the secondary pool) is 0, the device would block until sufficient entropy was
added from the primary pool. Achieving a property where the random bits extracted from this
device should always be “good”, while potentially having performance problem for the user due to
the blocking nature of the device. The second device is the /dev/urandom device, which isn’t a
blocking device. This device would return from its pool (the urandom pool) as many random bits as
the user wanted. The third interface that is used by the kernel code to extract random bits is the

18

get_random_bits function which also returns random bits from the urandom pool but not by read-
ing from the /dev/urandom device.

The authors show an attack on the forward security of the LRNG with an overhead of ς in
most cases and an overhead of ς for all other cases. This is a big improvement over the brute
force attack that would need an overhead of ς for the case of a 128 bytes pool.

Another contribution of the paper is noting a potential DoS attack in case a malicious user
would read excessive random bits from the /dev/random interface. Furthermore, the paper shows
the problem of having this generator used in settings that have very limited entropy sources, such
as the Open-WRT [51] platform.

3.8 Windows Random Number Generator (WRNG) Analysis

According to [52] the Windows Operating System has a 90% market share; this brings the PRNG
implemented in the Windows operating system to be the most used PRNG of all operating systems.
Unlike the LRNG (section 3.7), whose source code is readily available, the Windows PRNG (WRNG)
is behind closed source.

In 2007 Leo, Gutterman and Pinkas [53] published a detailed analysis of the WRNG of Windows
2000 and Windows XP (with SP < 3) machines. They further showed attacks on the forward security
of the generator, which was fixed in Windows XP SP3 [54]. We will briefly summarize the structure
and algorithm of this generator and their attack results.

The WRNG is an entropy based PRNG, which uses the algorithm specified in FIPS-186-2 appen-
dix 3.1 [29] construction with the use of SHA-1 as the G function. There is also use of RC4 when
getting entropy from the system. The pseudo code, as taken from the authors’ paper, for the main
loop of the WRNG follows.

1 // output Len bytes to Buffer
2 while (Len > 0) {
3 R = R XOR get_next_20_rc4_bytes();
4 State = State XOR R;
5 T = SHA -1õ(State);
6 Buffer = Buffer.concat(T); // concat denotes concatenation
7 R[0..4] = T[0..4]; // copy 5 least significant bytes
8 State = State + R + 1;
9 Len = Len ï 20;
10 }

Figure 7 WRNG Main Loop ς CryptGenRandom(Buffer, Len)

The output of the generator, as can be seen in lines 5-6, is 20 bytes in size, after the invocation
of the SHA1 function. We continue to loop until the buffer is filled with Len random outputs from
the SHA1 function output.

The function get_next_20_rc4_bytes is the function invoked in order to get 20 bytes of random
bytes that are fed to the generator. This function is implemented using 8 instances of an RC4
stream cipher operated in a round-robin manner. The ciphers are initialized (rekeyed) using system
entropy in a synchronous way in two situations: (a) at the beginning of the algorithm, (b) if we
received 16K Bytes of data from this cipher instance.
The function’s algorithm, as described in [53], follows:

1 // if | output of RC4 stream | >= 16 Kbytes then refresh the state
2 while (RC4[i]. accumulator >= 16834) {
3 RC4[i]. rekey (); // refresh with system entropy
4 RC4[i].accumulator = 0;
5 i = (i+1) % 8;
6 }
7 result = RC4[i].prng_output(20);
8 RC4[i].accumulator += 20;

19

9 i = (i+1) % 8;

Figure 8 get_next_20_rc4_bytes()

The implementation uses various system entropy sources to refresh the RC4 instances. The
complete list of the entropy sources is available in the authors’ paper. Each RC4 is rekeyed with
entropy of up to 3584 bytes in a process that also involves utilizing a hash function and additional
cycles of RC4 ciphers to produce the actual RC4 key.

The state of the generator is dictated by the two variables, R and State and the states of the 8
RC4 generators, which each state is 256 bytes long. Both variables, R and State, are 20 bytes in size,
so we can conclude that the state size is τπ ψϽςυφςπψψ ὦώὸὩί.

The authors proposed attacks over the forward security and backward security of this imple-
mentation. Both attacks assume the attacker has knowledge of the state at a specific time. By
observing the application memory space Leo showed that we can (relatively easily) get the values
of: State, R and the 8 RC4 internal states. The paper also discusses why getting the state is relatively
easy, mainly due to the fact that, unlike the LRNG, this generator is implemented purely in user-
mode. We continue to briefly summarize these key findings.

Backward Security: observing that (a) the entropy is refreshed only after the generator produc-
es ψϽρφȟσψτ Bytes, or 128KB of output and (b) the rest of the algorithm is deterministic leads to
the fact that between RC4 rekeying the generator has no backward security property what so ever.

Forward Security: adding to the above observations the fact that RC4 is not a one-way function
and has no forward security property, Leo showed that with an overhead of we can break the
forward security property of this generator. Moreover, he showed that if we allow ourselves to
assume that we can get the values of R and State at some point in the past, we can get an attack of
O(1) operations. This achievement is due to the fact we only need to invert RC4.

Attacks between rekeying: the paper notes that the attacks on the Forward and Backward se-
curity of the generator are only applicable between RC4 re-keying, since after this step the RC4
states are re-initialized. At first this assumption seems harsh, however considering that re-keying
occurs every 128KB of output it is actually a serious flaw in the generator. Mostly considering the
fact that, according to the paper, this amount of random data is equivalent to 600-1200 SSL con-
nections. Considering an average Windows user, this is certainly many connections that need to be
performed before the re-keying process takes place.

20

4 Analysis Methods

In this section we introduce the general structure of our analysis per each programming language in
question. We will also use this section to outline common assumptions and common techniques
that will be used throughout the analysis.

4.1 Notations/Jargon

The following are notations and general jargon that we will be using throughout the analysis:

¶ Generator, PRNG – we will be using these terms interchangeably to refer to the analyzed gen-
erator.

¶ Variant, flavor – all programming languages have more than one PRNG implementation. We
will refer to these alternatives as variants or flavors. In some languages even the same genera-
tor can have multiple settings that affect its security. We also refer to each setting as a different
generator flavor, when applicable.

¶ Code segments – code and pseudo-code segments are designed as following:

1 printf(òHello Worldó);

¶ Period, cycle length – we will use these two terms interchangeably to refer to the maximal
period that an analyzed generator has.

¶ When discussing bits in a bit array bn, bn-1 ,ΧΣ ō0 then the 0 indexed bit stands for the lsb bit.

4.2 Assumptions

The following are assumptions that we make in all of our programming languages:

¶ Architecture – we assume our architecture is based on 32 bit architecture.

¶ Operating Systems – our analysis covers the two most popular operating systems Microsoft
Windows [55] and Linux [56]. If there are differences between versions due to different imple-
mentation we will note when applicable. In some languages, e.g., PHP, we decided to present a
complete analysis only for the Linux platform; this due to the fact that most PHP deployments
happen on Linux platforms.

4.3 Common Analysis Structure

We will provide our analysis per each programming language using the following loose structure:

¶ Introduction – each programming language will have an introduction section. In this introduc-
tion section we provide background information for the analysis. Information such as the popu-
larity of the programming language, the different PRNG implementations that exist in this lan-
guage, version information that relates to our analysis, scope of our analysis and applicable re-
sources. Here we will also state the specifics of how the analysis was conducted in terms of
source code accessibility.

Per each flavor of PRNG that exists in the programming language we provide the following:

¶ Introduction – miscellaneous and introductory information that relates to this specific flavor.

¶ Design Space – here we discuss aspects that relate to software design of this implementation.
We specify the source files, header files, class files, functions and overall design that the imple-
mentation utilizes. Here we also explain the API that a developer can use to interact with this
generator.

¶ Under the Hood – concrete implementation details, including the PRNG properties of the gen-
erator. Here we will provide detailed explanations of the algorithm used, including pseudo code
in most programming languages. Each programming language would minimally contain the fol-

21

lowing information in this section: What is the theoretical PRNG behind this implementation? Is
there a way for the user to set the seed? What is the default seed implementation (if there is
any)? What is the size of the state? What is the size of the seed? What is the period of this gen-
erator? Is this generator entropy based?

¶ Security Properties Analysis – this section holds a detailed analysis of the security of this gener-
ator. We follow the security requirements explained in 2.2 that are: pseudo-randomness, for-
ward security and backward security. Here we will describe the various attacks that we found in
the applicable implementation. Where applicable we will also cover the security of the default
seed implementation and address the security of the seeding operation as a whole.

4.4 Attack Vectors and Attack Assumptions

Analyzing a programming language API without using a specific application in mind or an applica-
tion as an attack target can be hard. If we were to give our attacker too much strength then most
generators would be easily broken, e.g., since most generator run in user space an attacker that has
access to the machine can almost always access the concrete state, which would have made our
attacks trivial. The following are the attack vectors and attacker strength assumptions we used:

¶ Cipher text attacks – we only assume our attacker has access to outputs (or sometimes part of
the output) of the generator. We do not allow our attacker to have access to the machine, nor
the ability to change the state or parameters of the generator (although where applicable we
will state weakness if those parameters are easily changed by an attacker with access to the
machine).

¶ Space-time tradeoff attacks – space-time tradeoff is a technique that allows an attacker to
balance between the space and the time of her attack. Gutterman and Malkhi provide a general
scheme for the use of space-time tradeoff in PRNGs in [42]. We will not explicitly mention how
to use this technique in our attacks even in places it can be utilized.

¶ Consecutive outputs – some attacks require getting consecutive outputs from the generator. In
most attacks the consecutive outputs assumption can be replaced with an assumption that we
can know the applicable position in the random stream. We note that this assumption isn’t very
harsh considering that there are many applications where getting consecutive outputs is rela-
tively easy.

¶ Time based attacks – many seed implementations use time (or clock) values in order to seed
the generator in their default seed implementation. We will see that this type of seeding has
low entropy under realistic assumptions regarding the server up time, or other relevant param-
eters.

¶ Solving linear equations – in some attacks we’ll use the fact that the generator output gives us
linear equations over the generator’s state. For example, see the attack described in 5.4.4.2.1.

22

5 C

5.1 Introduction

There are many PRNG implementations for C. We will concentrate on the PRNGs that are available
in the standard C language specification, popular compilers and standard runtime implementations.
We will discuss the Microsoft C runtime (MSVCRT) [64] implementation and the gnu C library (glibc)
[58] which is popular on *NIX platforms.

Within these runtime implementations, we will discuss the ISO ANSI-C rand() family that is
available on Windows and *NIX platforms and other families: the BSD [59] random() and SVID [60]
drand48() traditional UNIX PRNG families. The latter are only available on *NIX platforms as they
aren't available with the default Microsoft runtime. On Windows platforms, as part of the security
enhancement in the CRT, there is a different flavor of rand() called rand_s() [61]. This variant will
also be covered here.

We note that there are many other 3rd party libraries that implemented other PRNGs, such as
implementations that follow the algorithms in [2]. These are out of the scope of this analysis. [62]
Gives a very good review on the algorithms presented in [2], as far as randomness and cycle length
of these generators.

glibc specific scope: There are several implementation variants in glibc; one of which is the
reentrant functions that as a convention have their function names end with a _r suffix (as defined
in the POSIX standard [63]). This analysis only covers the regular, non-thread safe functions. The
main difference of these variants is that the state isn’t preserved in global variables accessed by the
random functions but instead provided by the user during invocation of the function. However the
basic PRNG algorithm remains the same.

Importance of C generators: C is still one of the most popular languages used in the software
industry; especially in a performance demanding environment, such as embedded devices and real-
time applications. C is a major building block in modern programming languages and technologies:
the Java JVM is built partly in C, so is Microsoft’s CLR, Perl`s engine is written almost completely in C
and so on and so forth. Some of these languages still use the generators that are available in C,
either as fallbacks in case other variants can’t be used, or even as the default generator to use.

Version information: The glibc version that was studied was glibc-2.5 dated 29/9/2006. The Mi-
crosoft CRT implementation version that was studied was the one supplied with Visual Studio 2005
[64].

Structure of analysis: the structure we use for this analysis is a bit different than the one we use
to cover other languages. Since the dependence on platform in C is stronger than in other chapters,
we will analyze the Windows and the *NIX variants as independent generator implementations.

ANSI C Standard PRNG specification: C is a standardized programming language; it was stand-
ardized in 1989 and ratified as ANSI X3.159-1989 "Programming Language C." [65,66]. According to
the Rationale document [67], the Committee also noted the requirement of having a pseudo ran-
dom number generator implemented. They further claimed that the function should generate the
best random sequence possible in that implementation (meaning the implementation of ANSI C)
and therefore mandated no standard algorithm. Nevertheless, they recognized the value of being
able to generate the same pseudo-random sequence in different implementations, and so they
published as an example in the Standard an algorithm that generates the same pseudo-random
sequence in any conforming implementation given the same seed (can be seen in [67], 4.10.2, p
101). The algorithm is a portable one and is based on the LCG algorithm (2.4.1). Section 7.20.2 in
the Standard requires the following:

23

1. rand() function – (a) The rand function computes a sequence of pseudo-random integers
in the range 0 to RAND_MAX, (b) the value of the RAND_MAX macro shall be at least
32767 (ς ρ).

2. srand() function - The srand function uses the argument as a seed for a new sequence of
pseudo-random numbers to be returned by subsequent calls to rand. If srand is then called
with the same seed value, the sequence of pseudo-random numbers shall be repeated. If
rand is called before any calls to srand have been made, the same sequence shall be gener-
ated as when srand is first called with a seed value of 1.

5.2 Microsoft CRT (MSVCRT) Generators

5.2.1 (ANSI-C) C Standard Built-in Generators (rand() family)

http://msdn.microsoft.com/en-us/library/398ax69y(VS.71).aspx

5.2.1.1 Design Space

API: as required by ANSI-C, the core functions in the CRT that relate to generating pseudo random
numbers are rand() and srand (used to setting the seed) functions.

Adaptation from BASIC: according to the function comment of srand the algorithm is adapted
from the BASIC random number generator.

The functions are declared in the stdlib.h header file and implemented in the rand.c source file.

5.2.1.2 Under the Hood

The state/seed of the generator is held in a variable named _holdrand of type unsigned long. Each
thread has its own state variable, which is saved in the per-thread data structure named _tiddata.
_tiddata is a struct which is declared in mtdll.h (the include file for DLL/Multi-thread). This struct
also holds various thread related information such as the thread-id, thread handle and various
other data.

The theoretical PRNG behind it is LCG: the LCG’s implementation is as seen in the following
pseudo-code:

1 seed = seed Ā 214013 + 2531011;
2 output = (seed >> 16) & 0x7fff; //output is truncated to output
 maximum of 32767

The recurrence formula of this LCG is:

Xn+1=(aĀXn + c) mod ά, n>=0 ,
a = (214013) 10

c = (2531011) 10

m = ς

Implicit modulus parameter: m is chosen as a power of 2, since the implementation is done
with 32 bit unsigned arithmetic the addition of two unsigned numbers is performed with a modulo
of ς .

Output truncation: the output of the generator is bits 16-30 of the generator’s state.

Period: the generator has the maximal LCG period of (the size of m). This is due to the fact
that the parameters chosen satisfy the requirements outlined in 2.4.1:

1. m is chosen as a power of 2.
2. c and m are relative primes as their GCD is 1.
3. Since m is a power of 2, its prime factors are 2; following this (a-1) = 214012 is divisible by all

prime factors of m.

http://msdn.microsoft.com/en-us/library/398ax69y(VS.71).aspx

24

4. Both m and (a-1) are a multiple of 4.
State: the state size is effectively 31 bits. This is due to the fact that the MSb bit of the state is

never used. We can see that during stepping of the generator the MSb bit of the state only affects
the MSb of the state, and because we don’t use this bit in our output this bit actually has no contri-
bution to our generator.

Seed: there is an option to set a seed externally by invoking the srand function. The function
sets the generator’s state to be the function’s argument. We note that the fact, which follows from
the paragraph above, that only 31 bits of the given seed affect the generator, is not documented.

Default seed implementation: the default seed is initialized to be the constant 1. This can be
seen in the initialization process of the ptd structure, whenever a new thread is initialized, in the
source file tidtable.c line 482, in the function _initptd.

Entropy use: this implementation ŘƻŜǎƴΩǘ add any entropy to the generator.

5.2.1.3 Properties Analysis

5.2.1.3.1 Pseudo-randomness

Assuming we know the implementation is based on rand(), i.e., the generator is LCG with known
parameters.

Known Cipher-text attack: we can mount a similar attack to the one outlined in details
in 6.3.3.1 and we’ll give here only a brief sketch - The attack will require us to find out the missing
bits that were truncated before the output was generated. Assuming that a common implementa-
tion would require all the 15 output bits from the generator, we’ll find the unknown 16 remaining
bits of the seed by enumeration and validation.

Number of outputs needed: given an output, after seeing another verification output we will
have ρ ς Ͻς ρḙσ legal guesses for the internal state. If another output will be used to
verify the correct state we’ll have only ρ ς Ͻς ρḙρ ς valid options. So, we
can conclude that when using two more outputs for validation, we can find the real state.

Assuming we ŘƻƴΩǘ ƪƴƻǿ ǘƘŀǘ ǊŀƴŘόύ ƛǎ ǳǎŜŘ. We note that we can’t mount the Boyar [68] at-
tack in order to try and find out the LCG parameters (and conclude that this is in fact an LCG). This is
due to the fact that the output is never the entire state. If we get consecutives outputs, an easy
distinguisher is simply to mount the attack above, and then verify with another output.

5.2.1.3.2 Backward Security

None (not entropy based).

5.2.1.3.3 Forward Security

None; since it uses LCG, with knowledge of the current state we can simply reverse the LCG and get
to the previous states.

5.2.1.3.4 Default Seed Weakness

The CRT implementation actually doesn’t even try to provide with an adequate default seed. In case
the user won’t set the seed herself, the constant seed will be used, which is obviously not even
remotely secure.

25

5.2.2 rand_s()

http://msdn.microsoft.com/en-us/library/sxtz2fa8(VS.80).aspx

5.2.2.1 Design Space

Part of the efforts of making the CRT more secure that is described in [69], a new convention of
function names was introduced. This convention was to add a suffix _s (“secure”) for functions that
are now more secure (A good example is the new strcpy_s function which is a secure counterpart of
the strcpy CRT function. This new function takes another parameter, which is the size of the buffer,
so it can determine whether a buffer overrun will occur).

rand_s is another one of these new functions, which is a secure alternative for the CRT rand()
function analyzed in 5.2.1. The rand_s implementation is in the rand_s.c source file and declared in
stdlib.h.

In order to use this variant one should define, prior to the inclusion statement of rand_s, the
constant _CRT_RAND_S. This implementation is completely separate than the one of rand() and
srand(), thus it doesn't use the seed set by srand(), nor does it affect the state of rand().

Applicable Windows Versions: According to documentation in [61] this variant only works on
Windows XP and later. It uses the RtlGenRandom function, which is defined in NTSecAPI.h and
available in ADVAPI32.DLL in order to invoke the WRNG (3.8). The implementation of RtlGenRan-
dom is exported as SystemFunction036 in the DLL above. On Windows XP machines and later
CryptGenRandom invokes RtlGenRandom; according to [70] this was done in order for callers that
do not want to load the entire CryptoAPI to still be able to call the WRNG.

The API of rand_s is different than the one in rand():

1 errno_t rand_s(unsigned int* randomValue);

The function receives an int pointer, in which the next random integer will be placed. According to
the documentation the function produces a random number in the range 0ΧUINT_MAX
(πὼÆÆÆÆÆÆÆÆḙ ς ρ).

Misleading MSDN Documentation: there is an inaccurate statement in [69]. According to [71]
the .NET Framework equivalent of rand_s is System::Random class. From our analysis of .NET in
the 7.2 chapter we know that the generator implemented in System.Random doesn’t use the
WRNG generator.

5.2.2.2 Under the Hood

The function implementation just invokes the function RtlGenRandom requesting random value of
32 bit (size of unsigned-integer). As of such its analysis is identical to the one described in 3.8.

http://msdn.microsoft.com/en-us/library/sxtz2fa8(VS.80).aspx

26

5.3 *NIX glibc Generators

5.3.1 Introduction

There are many random number generators that are available in the glibc library. All generators are
declared in the stdlib.h header file. The resolving of different algorithms is based on constants
defined by the user.

5.3.2 (ANSI-C) C Standard Built-in Generators (rand() family)

http://www.gnu.org/s/libc/manual/html_node/ISO-Random.html#ISO-Random

5.3.2.1 Design Space

API: as required by ANSI-C, the core functions are rand() and srand (used to setting the seed).
The functions are declared in stdlib.h and implemented in rand.c and random.c (srand). The im-

plementation for rand() invokes the BSD variant random() function and srand() is mapped to the
srandom function.

Following this, the reader in encouraged to see the analysis of the BSD random() functions fami-
ly in the following section (section 5.4).

http://www.gnu.org/s/libc/manual/html_node/ISO-Random.html#ISO-Random

27

5.4 BSD C Generators (random() family)

http://www.gnu.org/s/libc/manual/html_node/BSD-Random.html

5.4.1 Introduction

The BSD style generators are available in the glibc library as a mean of compatibility for BSD like
systems.

Importance of BSD generators: The same generators are also available in the Mac-OS X Operat-
ing System, as it is based on BSD. This makes these variants even more important considering the
recent popularity of Apple based products, which all of them are built on top of some version of the
Mac-OS X. E.g., the popular iPhone (and now iPad) device are built on top of an OS, which is report-
edly derived from Mac-OS X [72].

5.4.2 Design Space

The implementation of the random functions family resides in random.c source file and defined in
stdlib.h. The implementations of random(), srandom and other family functions invoke the imple-
mentation of random_r(), srandom_r() and other corresponding functions.

Output size: the random() method returns a 31 bit value.
The implementation has two basic modes of operation: (1) An LCG implementation. (2) An im-

plementation based on Additive feedback generator (2.4.6) with 4 different polynomials. We will
use the acronym AFG during this analysis to indicate the latter.

The state array can be specified by the user using the initstate function. This function allows the
user to specify her desired size of state array and seed. Consequently this will determine the poly-
nomial used for the AFG, and whether the AFG or LCG is used. There is another API function called
setstate that is used to re-set the state array.

 For further details regarding the API the reader is encouraged to read the libc documentation in
[73].

Apart from these functions the operation API is similar to the one of the rand functions family.
Namely, there's a srandom function in order to initialize the seed and random function that is used
for stepping the PRNG.

State Array: Each entry in the state pool information array is an integer. The implementation
uses several pointers in order to manipulate this state array, see 5.4.3.1 and 5.4.4.1 for details.

Generator types: there are 5 types of generators used. The choice between the generators is
based upon the amount of information in the state array, i.e., the length of the state array as pro-
vided in initState. This can be seen in the next summary table:

Implementation (trinomial) |Input State|(Bytes)

G0 LCG (N/A) 8 ≤ |state| < 32

G1 AFG (ὼ ὼ ρ) 32 ≤ |state| < 64

G2 AFG (ὼ ὼ ρ) 64 ≤ |state| < 128

G3 AFG (● ●) мну Җ μǎǘŀǘŜμ ғ нрс

G4 AFG (ὼ ὼ ρ) 256 ≤ |state| < *

* - a state size that is bigger than 256 is truncated to 256.
The actual code that defines these implementations can be seen in 11.3.1. All implementations are
implemented in the random_r() function, which is implemented in the random_r.c source file. The
decision which implementation to use is controlled via the rand_type variable.

http://www.gnu.org/s/libc/manual/html_node/BSD-Random.html

28

If the user doesn’t initialize a state herself, the default generator chosen according to the de-
fault initialization used, which leads to the G3 implementation.

The analysis continues in the following structure: we first analyze the G0 variant and then con-
tinue to analyze the variants G1-G4 as they all share the same algorithm with different parameters.

5.4.3 G0: LCG

5.4.3.1 Under the Hood

The implementation uses the first element of the state array as the LCG's state, meaning an integer
value of 32 bits.

The theoretical PRNG behind it is LCG: the recursion formula of this LCG is:

Xn+1=(a*X n + c) mod ά, n >= 0
a = (1103515245) 10

c = (12345) 10

m = ς

The actual code of the implementation can be seen in 11.3.1.
Resemblance to ANSI-C example algorithm: this implementation and parameters are the pa-

rameters used in the algorithm example in the ANSI C Standard. The only difference is that this
implementation allows the output of up to 31 bits, instead of the 16 bits used in the Standard.

Period: the generator has the maximal LCG period of (the size of m). This is due to the fact
that the parameters chosen satisfy the requirements outlined in 2.4.1.

State: the state size is 31 bits long, due to the modulus used.
Seed: there is an option to set a seed externally by invoking the srandom function. The function

simply sets the state to be the seed supplied. It first makes sure the seed supplied isn’t equal to 0. If
it is equal to 0, the implementation sets the seed to be equal to 1, as specified in the ANSI-C Stand-
ard.

Default seed implementation: as specified in the ANSI-C Standard, the default seed is equal to
1.

Entropy use: this implementation ŘƻŜǎƴΩǘ add any entropy to the generator.

5.4.3.2 Properties Analysis

5.4.3.2.1 Pseudo-randomness

Unlike other LCG implementations that we’ve covered in this paper, here the output of the genera-
tor is simply the state of the LCG. This leads to the following attacks.
Assuming we know the implementation is based on random(), i.e., the generator is LCG with known
parameters.

Known Cipher-text attack: we notice that if we can get our hands on a complete output of the
state, meaning the application will request an output of 31 bits, then our attack is complete and we
have the state in our hands. If we don’t get a complete output we can still mount a cipher-text
attack similar to the one in MSVCRT (5.2.1.3.1). We will always guess the amount of bits we didn’t
get as output as the bits we need to guess in order to get to the state, and use another output(s)
for validation.
!ǎǎǳƳƛƴƎ ǿŜ ŘƻƴΩǘ ƪƴƻǿ ǘƘŀǘ ǊŀƴŘƻƳόύ ƛǎ ǳǎŜŘΦ If we get enough outputs (ὰέὫς σρ),

we can mount the attack proposed by Boyar [68] in order to find out if the generator is LCG with
the known parameters. However we since we just want to verify that the generator is LCG with
given parameters, we can simply do it using two consecutive outputs.

29

5.4.3.2.2 Backward Security

None (not entropy based).

5.4.3.2.3 Forward Security

None; since it uses LCG, with knowledge of the current state we can simply reverse the LCG and get
to the previous states.

5.4.4 G1-G4: AFG

5.4.4.1 Under the Hood

The theoretical PRNG behind is AFG: the algorithm uses the additive number generator; in [1] pp.
26-28, Knuth discusses these types of generators in detail. The simplified recursion function of the
algorithm is:

Xn=(X n- deg + X n- sep) mod ς , n >= 0

Where deg is the degree of the polynomial used and sep is the separation between the two
lower order of coefficients of the trinomial, meaning the distance between fptr and rptr as seen in
Figure 10 AFG Algorithm . For each of the generators, G1-G4, we get the following:

deg sep

G1 (ὼ ὼ ρ) 7 3

G2 (ὼ ὼ ρ1) 15 1

G3 (● ●) 31 3

G4 (ὼ ὼ ρ) 63 1

Figure 9 deg, sep assignment per each flavor

The algorithm implementation can be seen in the following diagram:

rp
tr

E
n

d
_

p
tr

fp
tr

Shift

+

rp
tr

E
n

d
_

p
tr

fp
tr

Shift

+

O
u

tp
u

t

truncate
Feedback

truncate
Feedback

Figure 10 AFG Algorithm Diagram

Implementation details: similar to the implementation in 7.2 (C#), the implementation uses an
array of (signed) integers. The algorithm keeps three pointers to the array: front pointer, rear

30

pointer and an end pointer (fptr, rptr and end_ptr accordingly). fptr and rptr are positioned in a
distance of sep between them. The actual code of the algorithm can be reviewed in 11.3.1.

Stepping the generator: in each iteration of the generator fptr and rptr and summed, the
summed product is placed where fptr points to, to create a feedback. Then the two pointers incre-
ment by one, i.e., the register is shifted. Incase either of the two pointers reaches the end of the
array, by reaching the end pointer, it wraps around to the start of the array.

Output reduction: the function returns the summed product reduced to 31 bits by chucking the
least significant bit.

State: the state of the generator is the array of integers, which depends on which generator is
used. The state size (|state|) of the generator is ▀▄▌z ╫░◄▼; which means 7*32=224 bits,
15*32=480 bits, 31*32=992 bits, and 63*32=2016 bits for generators G1, G2, G3, and G4 respec-
tively.

Inaccuracy of code documentation regarding period length: we note that the code documenta-
tion states that the algorithm reaches the period length of ὨὩὫzς ρ. Furthermore, it states
that surely the period for G1 isn’t small as χz ς ρ ψψω. According to the literature we found
the actual period, when a modulus of the power of 2 is used and the generating polynomial is prim-
itive, is as follows.

Period: since all polynomials used are primitive we know that the least significant bit achieves

the maximal period, which is ςȿ ȿ ρ. This means that our generator achieves at least this cycle
length. As noted by Knuth in p 27 in [1] the period of the entire algorithm is bigger than this since
the summation also affects the high order bits (since there is a carry for the summation). According

to [23] the cycle is ╜ ᶻ ▀▄▌ , where M is the power of 2 used in the modulus. I.e., we can

conclude that the period for G3, G4 is ᶻ ȟς ᶻς ρ respectively.
Entropy use: this implementation ŘƻŜǎƴΩǘ add any entropy to the generator.
Seed: there is an option to set a seed externally by invoking either srandom or initstate. init-

state initializes the data structures and invokes srandom to perform the actual initialization logic.
We note that a user can also pass a complete state array using setstate function. The seed is a
single unsigned integer. Here, as in G0, a seed value of 0 is not allowed and 1 is used instead.

Default seed: the default seed is equal to 1. The initial state array is populated from this value
as following.

Initial state generation procedure from the given seed: in order to populate the state array the
implementation uses a two-step procedure: (1) invokes an LCG generator on the given seed and fills
the entire state array, (2) cycles the entire state array 10 times by invoking the random function.
This can be seen in the following pseudo-code:

1 state[0] = seed;
2 for i = 1..deg do
3 // ὢ ρφψπχὢ άέὨ ς ȟ ὲ π
4 state[i] = (16807 * state[i - 1]) % 2147483647;
5 end
6
7 for i = 0..deg*10 do
8 random() ;
9 end

Figure 11 State Initialization Code (srandom function)

We note that the actual code also makes sure that result of the LCG won’t overflow 31 bits. The
actual source code can be viewed in 11.3.1.

5.4.4.2 Properties Analysis

5.4.4.2.1 Pseudo-randomness

31

As mentioned above, for the sake of the simplicity in the analysis of pseudo-randomness we will
consider that the generator used is G3, because it is the default generator that most users would
use. The analysis is easily extended to other generators by using the different generators` parame-
ters.

Assuming we know the implementation is based on random G1-G4: this will give us the infor-
mation of the algorithm used for the generator and its parameters.

Brute Force: a brute force attack of the state would require searching a space of , which is
not a feasible search space. By allowing ourselves to get outputs from the generator, we get the
following improved attack.

Known cipher-text attack: note that even after getting 31 consecutive outputs from the gener-

ator, we still have options for the unknown LSbs of the 31 words of the state that were trun-
cated from the output. To find these bits, we will follow Klein’s [74] attack to break the state.

Reminding ourselves that our series is:
ὢ ὢ ὢ άέὨ ς

An equivalent representation is:

ὢ ὢ ὢ άέὨ ς

Writing out internal state at step n as:

ὢ τz ὑ ςz ὒ ὄ

Where ὑ represents bits 2…31, ὒ is bit 1 and ὄ is the LSb bit (bit 0), which is what we are trying
to find.

Extracting ║▪: Observing how ὢ advances: if ║▪ and ║▪ are both 1, then we have a carry
from this LSbs to ὒ. This means that when we see from our outputs that ὒ ὒ ὒ
ρ άέὨ ς, we can surely conclude that

(*) ὄ ρ Ƞ ὄ ρ.
Note that both equations are linear equations in the state bits, for example if we know in this way
that ὄ ρȟὄ ρO ὄ ṥ ὄ ρȟὄ ρ.

If ║▪ or ║▪ , we don’t have a carry, thus if ὒ ὒ ὒ άέὨ ς, we can
only know that

(**) ὄ π or ὄ π.
Note that, like in the previous case, we are actually getting constraints on the state bits, for exam-
ple if we get that ὄ π έὶ ὄ πO ὄ π έὶ ὄ ṥ ὄ π.

Klein follows and shows that we would need a minimum of extra 38.27 outputs. This is due to
the fact that beyond the initial 31 outputs the distribution of this carry bit is ¼:¾, thus by applying
the binary entropy function we get:

Ὄ
ρ

τ

ρ

τ
ὰέὫ

ρ

τ
ρ
ρ

τ
ὰέὫρ

ρ

τ
ḙπȢψρ ὦὭὸί έὪ ὭὲὪέάὶὥὸὭέὲ

Meaning we would need 31+31/0.81ḙ69.27 outputs. However this only holds if the variables

were independent; this is not the case here, so we would need some more outputs (equations) in
order to have all the information to find ὄ. Klein argues that we would need 80-100 outputs in
order to get to a single solution. So we can conclude that if we were to get 80-100 consecutive
outputs, we would be able to reconstruct the entire state.

32

After showing in the discussion above that 80-100 outputs should be enough to get the state
(information wise), we’ll now show how we can get to the state from those outputs. We have two
alternatives:

1. Use a brute force approach over the ς space (of the missing Bn bits) and for each option
verify that the generator indeed produces the 80-100 real outputs. We know from the in-
formation theory reasoning above that only one such option will pass this validation.

2. A more efficient way is to first solve the linear equations in (*) above, and get all the candi-
dates for ὄȣὄ that fulfill the (*) constraints. Following this, we will eliminate false solu-
tions using the constraints in (**) above.

!ǎǎǳƳƛƴƎ ǿŜ ŘƻƴΩǘ ƪƴƻǿ the implementation is based on random. We could just try and mount
the attack above in order to distinguish this generator`s output from a random output.

5.4.4.2.2 Backward Security

None (not entropy based).

5.4.4.2.3 Forward Security

None – if we have the state in our hands, we can reconstruct the subtraction equations in order to
get to a previous state.

5.4.4.3 Seed Weakness

State initialization weakness: we note that the procedure in the initialization process is completely
reversible. If we managed to extract the state information using the attack outlined above (sec-
tion 5.4.4.2.1) we are able to get to the initial seed by reversing the initialization process. This, by
itself, can lead to even greater exposer, in case the seed is supposed to be secret (as seeds tend to
be). Klein mentioned this in his attack that by reversing to the seed from the revealed state, the
attacker can have a coarse indication as to the amount of DNS outgoing queries sent.

Brute force: the seed is only a 32 bit integer (before the warm up phase that expends it to 31
words), so if we get an output and we know the number of output iterations since initialization we
can mount a brute force attack that will use this output for validation. Note that here we need to
know how many times the generator was stepped, as opposed to the attack above that could use
any 100 consecutive outputs.

Default seed weakness: the default seed is constant, thus has no entropy what so ever.

33

5.5 SVID C Generators (rand48() family)

http://www.gnu.org/s/libc/manual/html_node/SVID-Random.html

5.5.1 Introduction

This family of functions is intended for compatibility with the SVID standard [75]. As it name sug-
gests these functions use 48 bits of state size.

5.5.2 Design Space

There are several flavors of functions for the caller to choose from. The functions differ mainly by
the way the random bits are returned, e.g., double, long etc.

Two distinct types of functions exist: one that generates output from a global state of the gen-
erator and another that allows the user to explicitly pass the entire state of the generator. All these
variants use the same generator algorithm.

API: the various API functions for generating random values are:
1. drand48 – Returns a non-negative, double floating point value in πȢπȟρȢπ.

erand48 – Same as the above, only allows the user to specify the complete state.
2. lrand48 – Returns a non-negative, long integer in πȟς .

nrand48 – Same as the above, only allows the user to specify the state.
3. mrand48 – Returns a signed, long integer in ς ȟς .

jrand48 – Same as the above, only allows the user to specify the state.
For further details the reader is encouraged to refer to the documentation in [60].

Source files: All of the above functions reside in separate implementation files with the file-
name as the name of the function, e.g., drand48 resides in drand48.c. The actual implementation of
the generator resides in drand48-iter.c source file and this was used as the source for our analysis.
The main function is named accordingly __drand48_iterate – this is an inner function which is not
exported to the user.

Like in the BSD variants (5.4) there are also reentrant function variants that end with the _r suf-
fix. Their implementation is not covered explicitly in this analysis as they share the same generator
algorithm.

Initialization: there are several functions that can be used in order to set/initialize the genera-
tor. The functions differ from one another by the amount of control the user has in initializing the
generator and consequently the amount of information the user has to supply for the initialization
process. Below is a quick summary of the various initialization functions.

1. srand48 (long int seedval) – seeds the generator. Receives a 32 bits seed value.
2. seed48 (unsigned short int seed[3]) – seeds the generator allowing setting the entire 48 bits

of the state.
3. lcong48 (unsigned short int param[7]) – allows complete control on the generator’s state

and parameters. We note that this level of control, although good if one wants to an entire-
ly different configuration for the algorithm can cause abuse, since the algorithm parameters
need to follow strict requirements to guarantee adequate randomness and a full period.

Initializers source files: All of the above functions reside in separate implementation files (C
files) with the filename as the name of the function.

5.5.3 Under the Hood

State structure: the implementation uses three shorts (2 Bytes) in order to represent the genera-
tor's state. The structure used in the various functions is drand48_data, which is defined in stdlib.h.

http://www.gnu.org/s/libc/manual/html_node/SVID-Random.html

34

This structure holds the current state, previous state and various parameters of the generator. The
structure`s source code can be seen in 11.3.2.

The theoretical PRNG behind it is LCG: the LCG’s implementation’s source code is:

1 X = (uint64_t) xsubi[2] << 32 | (uint32_t) xsubi[1] << 16 | xsubi[0];

2 result = X * buffer - >__a + buffer - >__c;

3 xsubi[0] = result & 0xffff;
4 xsubi[1] = (result >> 16) & 0xffff;
5 xsubi[2] = (result >> 32) & 0xffff;

Figure 12 Rand48 Algorithm Code

xsubi[] is the array that holds the state information for the generator. The LCG formula is per-
formed as usual with X as the variable that holds the state. The translation of the array state to X is:

X:

011516313247

x
s
u

b
i[0

]0

x
s
u

b
i[0

]1

x
s
u

b
i[0

]1
5

x
s
u

b
i[1

]0

x
s
u

b
i[1

]1
5

x
s
u

b
i[2

]0

x
s
u

b
i[2

]1
5

48

0

é.. é..é..é..

Figure 13 Diagram of Translation from xsubi Array to the State Variable X

The recursion formula of this LCG is:

ὢ ὥὢ ὧ άέὨ άȟ ὲ π
a = (25214903917) 10

c = (11) 10

m = 2 48

Parameters choice: this choice of (a, c, m) guarantee a LCG with a maximal period.
Output truncation: the output of the LCG implementation depends on which function from the

API we chose to use. In order to simplify the analysis, we will consider only the function of
lrand48/nrand48 that returns 31 bits which represent an unsigned integer. The output that is re-
turned is the 31 MSB bits of the state. This can be seen in the implementation as xsub[0], which
holds the LSB bits of the state, isn’t returned to the user. This can be seen in the following diagram.

0115163132

é..é..

x
s
u

b
i[1

]1

x
s
u

b
i[1

]2

x
s
u

b
i[2

]1

x
s
u

b
i[2

]0

x
s
u

b
i[2

]1
5

0

Entropy use: this implementation ŘƻŜǎƴΩǘ add any entropy to the PRNG.
Period: the implementation reaches the maximal period of (size of m).
State: the state size is 48 bits.
Seed: there is an option to set the seed externally. The seed setting alternatives follow.
1. srand48 – Using this function we can supply 32 bits seed. The initialization takes the 32 bits

supplied and sets the 32 MSB bits of the state. The 16 LSB bits of the state are set to a con-
stant of 0x330E. The resulting state is:

35

011516313247

s
e

e
d

0

s
e

e
d

1
5

s
e

e
d

1
6

s
e

e
d

3
2

48

0

é.. é..é.. 1 1 0 0 1 1 0 0 0 0 1 1 1 0

Figure 14 The State after Initialization Using srand48

2. seed48 – Using this function the user can supply 48 bits of seed which will be translated to

the initial state of the generator.
3. lcong48 – Using this function the user can control all the properties of the generator: she

can set the initial state and control the values of c and a of the LCG.
Default seed implementation: there isn't any default seed. Following this, calling any of the

functions of this generator without setting the seed would result in the returned sequence as if 0
was the initial seed, meaning the fixed value of 0. From a developer point of view this decision has a
disadvantage as it burdens the developer (who isn’t always knowledgeable in the disadvantages of
using a weak seed) with the responsibility of giving a strong enough seed to the generator.

5.5.4 Properties Analysis

Since this implementation is identical to one that we covered in 6.3 the reader is encouraged to
view the analysis carried there. The only difference is that in this implementation we don’t have a
default seed, thus the attack on the seed proposed there isn’t applicable here.

36

6 Java

6.1 Introduction

The following details were extracted from Java SDK (Software Development Kit) version 6u1 [76]
dated 29/3/2007.

There are 3 major flavors of PRNG implementations in the JDK (Java Development Kit). Two of
which, Math.Random and java.util.Random, are the same implementation with a different API. The
third one, java.security.SecureRandom, is a complicated implementation, designed to be the secure
PRNG to be used in security sensitive applications. This flavor also has several modes of operation,
which are configuration and operating system dependent.

6.2 Math.Random

http://download.oracle.com/javase/6/docs/api/java/lang/Math.html

6.2.1 Design Space

API: Math.Random has a public method called random() whose implementation follows:

1 if (randomNumb erGenerator == null) initRNG();
2 return randomNumberGenerator.nextDouble();

Figure 15 Math.Random random method code

The method returns a double value with a positive sign, greater than or equal to 0.0 and less than
1.0 . Returned values are chosen pseudo randomly with (approximately) uniform distribution from
that range (from API doc).

The class holds a private static java.util.Random object named randomNumberGenerator. This
object is initialized on the first call of random(). The initialization is done with the default seed,
meaning calling the default constructor of java.util.Random. (See analysis of java.util.Random
in 6.3.3 for default seed)

This random() method is only a wrapper method for the java.util.Random.nextDouble() method.
Given this fact we will not discuss the PRNG issues for this flavor, since it is covered in details in the
next section (java.util.Random).

6.3 java.util.Random

http://download-llnw.oracle.com/javase/6/docs/api/java/security/SecureRandom.html

6.3.1 Design Space

The analysis is based on version 1.47 of java.util.Random.
The API of java.util.Random is comprised of the following methods:

1 synchronized public void setSeed(long seed) { ... }
2 protected int next (int bits) { ... }
3 public void nextBytes(byte[] bytes) { ... }
4 public int nextInt() { ... }
5 public int nextInt(int n) { ... }
6 public long nextLong() { ... }
7 public boolean nextBoolean() { ... }
8 public float nextFloat() { ... }
9 public double nextDouble() { . .. }
10 synchronized public double nextGaussian() { ... }

Figure 16 java.util.Random API methods

All the methods finally invoke the main next(int bits) method which steps the generator.

http://download.oracle.com/javase/6/docs/api/java/lang/Math.html
http://download-llnw.oracle.com/javase/6/docs/api/java/security/SecureRandom.html

37

6.3.2 Under the Hood

The theoretical PRNG behind it is the LCG PRNG: more specifically it uses LCG's implementation as
introduced in [1], which was also analyzed in the rand48 functions family (see section 5.5).

The Java LCG's implementation code is as follows:

1 protected int next(int bits) {
2 seed = (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1)
3 r eturn (int)(seed >>> (48 - bits))
4 }

The recursion LCG formula is:

Xn+1=(a*X n + c) mod ά, n>=0 ,
a = (25214903917) 10

c = (11) 10

m = 248

Parameters choice: this choice of (a, c, m) guarantee an LCG with a maximal cycle, as shown
in 5.5.3.

m: m is chosen as a power of 2, this means the implementation can be with the '&' operator,
thus gaining performance. However, as described in [1] this results in a shorter cycle of the low
order bits of the state than of the state as a whole. Probably due to this, the implementers chose to
take only the upper 48 bits.

The output of the generator is truncated by shifting the state right (unsigned shift >>>) by (48-
bits) bits, where bits is the amount of bits requested by the calling method. E.g., the method nex-
tInt invokes next(32) in order to get an integer value.

Entropy use: This implementation ŘƻŜǎƴΩǘ add any entropy to the PRNG.
Period: the implementation reaches the maximal cycle of the LCG: 248 (the size of m).
State: The state size of the PRNG is 48 bits due to the modulus used.
Seed: There is an option to set a seed externally and there's a default implementation for a

seed. The seed is represented by a 64 bit integer, of which only the 48 LSb bits are used. This can be
seen in the following code snippet.

1 (seed ^ 0x5DEECE66DL) & ((1L << 48) - 1)

Default seed implementation: There is an implementation for obtaining a default seed. The im-
plementation is based upon obtaining a timestamp as can be seen in the following pseudo-code:

1 seed = (S U++) + current timestamp nano

2 seed = (seed Äa) &((1L << 48) - 1)

Figure 17 java.util.Random default seed implementation

Where the initial value of constant SU = 8682522807148012.
Nano seconds precision: The default seed implementation gets the current time with Nano se-

conds precision. The value is platform depended. The Java doc only states it's a time with Nano
seconds precision from a certain constant time (not necessary the "epoch" of 1970). Moreover the
value can be negative.

Seed Uniquifier (SU): in order to make consequent creations of default Random objects create
different Random streams, a static long is added to the default seed. This value progresses by 1
each time a default Random object is created. We note that the choice for the specific initial value
of parameter SU is not documented, nor does it seem to affect the security of the generator.

38

6.3.3 Properties Analysis

6.3.3.1 Pseudo-randomness

Assuming we know the implementation is based on java.util.Random: This will give us the infor-
mation that the implementation is LCG based and we also know the parameters of this LCG.

Known cipher text attack (Finding the missing bits from the state): In this attack we assume
that we get one or more outputs from the generator. If the generator was a classic LCG implemen-
tation, meaning the output was the state it-self and not a truncated version of the state, we would
have had the state in our hands. However, since there isn’t any public method that outputs the
entire state we need to find those truncated missing bits.

Reminding that when n random bits are requested, the generator returns the n MSb from the
state, meaning (48-n) bits are chucked from the state before returning the output; the attacker
needs to break a space of ς Ȣ

Under the assumption that most implementations would require getting random numbers (in-
tegers) an attacker has to break a space of in order to reveal the entire state, which is feasible.
We still need a way to verify our guess.

Denote H as the 32 bit we get from the output and L as the 16 bits that we need to guess. Thus,
the state at step i, Si, can be written as:

Ὓ ς Ὄ ὒ ȟȿὛȿ τψ ὦὭὸί

Number of outputs needed to verify our guess: Considering LCG as a random function, the ex-

pected number of different [Ω (besides the true value) that gets us to the same H as our guess is
ς ς ρḙς , so 1 output should be enough to validate the missing bits of the seed.

Note that this attack is still valid if we were to know how many times the generator was
stepped before getting the second output.

Now, let's assume we don't know we are dealing with java.util.Random. If we get consecutives
outputs of 32 bits each, since the attack above is efficient we just need to mount the attack and
finish.

6.3.3.2 Backward Security

None (not entropy based).

6.3.3.3 Forward Security

None; since it uses LCG, with knowledge of the current state we can simply reverse the LCG and get
to the previous states.

6.3.3.4 Default Seed Weakness

The role of SU: since SU is a simple sequential number - we can try all the sequences after reducing
the attack on the time based portion of the seed.

Now, let’s review how many bits of entropy there are actually in the default seed: usually pro-
grams construct new Random objects in two scenarios (a) at the application startup as static in-
stance and share it between different consumers; (b) as new objects each time a random value is
needed.

(a) Application startup – knowing the exact application startup can be hard, however some as-
sumptions can be done. We can assume that the application startup is the same as the serv-
er uptime (in most servers the application will be a system service that would startup shortly

39

after the server’s startup). In the worst case let’s assume we know nothing about the actual
server’s uptime: We can assume that the server goes offline once a year since even a 5 nines
of availability states 5 minutes of downtime per year, this reduces our attack space to
log2(365days * 24hrs * 60mins * 60sec * 1000ms * 1,000,000ns) = 54.80 ~= 55 bits.
We can further improve our attack if we were to allow some more assumptions; if the serv-
er is open to an nmap probe3 or to other techniques, such as packet sequencing guessing,
then the server’s uptime can be pin pointed to the exact second. Here’s a typical nmap out-
put regarding the uptime of a server:

11.236 days (since Wed Oct 28 14:01:57 2009)
This can reduce our attack to: log2(1sec * 1000ms * 1000000ns) = 29.89 ~= 30 bits.
An even less aggressive assumption can be made by looking at some statistics regarding av-
erage server uptime values. Such values are available at sites such as
http://uptime.netcraft.com.

(b) New objects for each invocation – knowing the current time of the attacked server can be
found by many techniques, such as observing the Hello message in the SSL protocol hand-
shake [77]. Even if these methods aren’t applicable we can assume that most servers today
synchronize their time somehow (via NTP4 or other measures), thus a good assumption is
that the attacker can guess the current time with a minute of error. This reduces the attack
to only

log2 (1min * 60sec * 1000ms * 1000000ns) = 35.804 ~= 36 bits.5

3
 http://nmap.org/

4
 http://www.ntp.org/

5
 Actually, according to the JVM implementation on Windows, this could be even weaker. If the Windows machine

doesn’t support High Performance Counters, then the implementation falls back to: Timems * 1,000,000. This actually
results in no more than milliseconds precision, which leads to log2(1 * 60 * 1000) = 15.87 bits = 16 bits

http://uptime.netcraft.com/
http://nmap.org/
http://www.ntp.org/

40

6.4 java.security.SecureRandom

http://download-llnw.oracle.com/javase/6/docs/api/java/security/SecureRandom.html

6.4.1 Introduction

This is the stronger implementation of a PRNG that exists in Java. As stated in the documentation
άΧ ǘƘƛǎ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ minimally complies with the statistical random number generator tests
specified in FIPS 140-2 [78], Security Requirements for Cryptographic Modules, section 4.9.1. Addi-
tionally, SecureRandom must produce non-deterministic output. Therefore any seed material passed
to a SecureRandom object must be unpredictable, and all SecureRandom output sequences must be
cryptographically strong, as described in RFC 1750 [79]: Randomness Recommendations for Securi-
ǘȅέ.

This section is organized in the following manner: The design space section surveys the general
architecture and design of the SecureRandom providers. We then analyze each of the various pro-
viders in respect to the specific design space and prng algorithm used. We then follow to discuss
the PRNG analysis of each provider.

6.4.2 Design Space

The analysis is based on version 1.54 of java.security.SecureRandom.
As given by its name, Sun states that this flavor of prng is a secure one. It relies on JCA (Java

Cryptographic Architecture), thus allowing pluggable JCA providers to be added and used (e.g., on
Windows platforms one can use the Windows-PRNG as exposed by MS CryptoAPI (CAPI)). The
default PRNG provider is Sun's provider, which utilizes SHA-1 as the PRNG algorithm.

For an elaborate explanation of JCA refer to the documentation in [80].

Figure 18 SecureRandom Class Diagram of Default Available SecureRandomSpi

http://download-llnw.oracle.com/javase/6/docs/api/java/security/SecureRandom.html

41

Figure 18 shows the class diagram of the various SecureRandom providers that are available in
the JDK. The java.security.SecureRandom extends java.util.Random and uses the resolved imple-
menter java.security.SecureRandomSpi, which is the SecureRandom Service Provider Interface, in
order to perform the actual work.

 Provider API: The Service Provider, java.security.SecureRandomSpi, dictates the following op-
erations:

1 protected abstract void engineSetSeed(byte[] seed);
2 protected abstract void engineNextBytes(byte[] bytes);
3 protected abstract byte[] engineGenerateSeed(int numBytes);

Figure 19 SecureRandomSpi API methods

Besides the obvious operations of setting the seed (engineSetSeed) and getting random bytes
from the engine (engineNextBytes), each specification needs to also support generating a seed
(engineGenerateSeed). This is a notable design decision that allows using different implementa-
tions for generating seeds and asserting the semantics that a seed should be treated differently
than just getting bytes from the generator.

Resolving: The resolving of the appropriate Provider is implemented in the getPrngAlgorithm
method as follows: it finds the first available JCA provider that implements the "SecureRandom"
service. Since the JCA contract for providers state that the providers are placed in an array in a 1-
based order of precedence, the first provider has the highest precedence, thus the "best" provider
is chosen. The provider provides all the JCA services and not necessarily the implementation of the
random generator.6 If no provider implements the "SecureRandom" service the default Sun's pro-
vider is chosen.

java.security configuration file: the configuration and resolving of providers (the ordering and
priority of providers) is written in the java.security configuration file. The default contents of the
configuration file, as shipped with new JDK installations can be seen in 12.1. The file is shipped with
every installation of JDK/JRE of java under the lib/security folder.

The fact that the file resides in the file-system and without any protection can contribute to a
downgrading attack. Assuming the attacker has access to the folder in which the JRE/JDK is in-
stalled, the attacker can change the order in which the providers are defined and to cause a less
secure PRNG to be invoked. Naturally, this depends on the permission of the installation directo-
ries, in which the user installed the JRE. However Sun could have put it in a more secure location,
such as, on Windows platforms, the registry location to prevent this kind of error. We note that
even if the file is only readable, knowing the chosen Provider is information that can benefit the
attacker.

Delegation: After the Provider is chosen, all the Random methods simply delegate the calls to
the providers̀ relevant methods.

Implementations: there are several implementations for SecureRandomSpi that are available in
JDK. Below is a summary of the available implementations and applicable platforms; this can also
be seen in Figure 18.

6
 This means that if, for instance, we have a great SecureRandom provider but a really bad RSA or DSA implementa-

tion it will be picked also for the RSA/DSA implementation. This is due to the fact that the order of precedence of the
providers in JCA is general and not service-dependent.

42

Implementation Platform

P1 sun.security.mscapi.PRNG Windows

P2 sun.security.provider.nativePRNG *NIX (Linux/Solaris)

P3 Sun.security.provider.SecureRandom Independent

P4 sun.security.provider.pkcs11.P11SecureRandom N/A (PKCS)
Table 2SecureRandomSpi implementations

We now continue and examine each one of the above implementations.

6.4.3 P1: MSCapi PRNG

6.4.3.1 Design Space

The implementation utilizes the MS-CAPI infrastructure [81]. The implementation is a native im-
plementation that uses the CryptGenRandom API method to produce random bits.

Implementation: The implementation can be reviewed in the JDK source files under
\ src\ j2se\ src\ windows\ native\ sun\ security\ mscapi\ security.cpp. All of the API methods are
delegated to one native function - generatedSeed:

1 native byte[] generateSeed(int length, byte[] see d);

 The different SecureRandomSpi methods are implemented using a convention of the length
parameter. (a) If length < 0: the implementation uses the supplied seed to re-seed the generator,
(b) if length = 0: the implementation generates new random bytes of sizeof(seed) and places it in
the seed parameter, (c) if length > 0: the implementation generates new random bytes of specified
length.

6.4.3.2 Under the Hood and Properties Analysis

The implementation uses the default implementation that exists in the MS-CAPI implementation,
including the default seed generation.

For a detailed analysis of the generator that is used and its security properties in the MS-CAPI
infrastructure please refer to the analysis of the Windows Random Number Generator in 3.8.

6.4.4 P2: nativePRNG

6.4.4.1 Design Space

This implementation utilizes /dev/random and /dev/urandom. This is the OS based generator that is
available in *NIX. Please refer to 3.7 for an explanation of the algorithm used by this generator.

The implementation uses a singleton instance of the inner class RandomIO for the actual work.
According to the comments, this is in order to not open the file descriptors of /dev/[u]random
every time. The singleton instance is instantiated during class initialization.

Urandom buffer (urandom_buf): The implementation uses a buffer on top of /dev/urandom of
32 bytes. The buffer also has a freshness time, Tfresh, of 100 msec. This means that we will always
reset the buffer when trying to read data which passed this freshness time. As explained in the
actual code comments this is to prevent the implementation from reading stale data from the
buffer.

Mixing algorithm: The implementation also uses the default SUN implementation, P3, in order
to mix in random bytes from both implementations. According to the documentation, this instance
is used in tandem to the native generator, in order to make sure the user has the ability to set an

43

external seed. This seems like a technical/design decision, since setting an external seed under *NIX
platforms must be performed by writing to the /dev/ [u]random device and in some systems it
requires root access. The designers chose to add the P3 instance in order to fully support the Se-
cureRandom API, which requires the ability to seed an external seed. All invocations of this flavor
also mix random bytes as read from P3.

Initialization process: the initialization process opens the input streams from both devices and
initializes the urandom buffer. The initialization of the mixing algorithm is lazy, upon demand. It is
initialized by reading 20 bytes directly from the /dev/urandom input stream.

6.4.4.2 Under The Hood

PRNG implementation: the algorithm implementation gets random bytes from the urandom buffer
and XORs it with random bytes from P3 (as its mixing algorithm). The pseudo code for getting bytes
from the generator follows.

1 if P3 is NOT initialized then // initialize P3
2 read(/dev/urandom, buf);
3 P3.engineSetSeed(buf); // buf is 20 bytes in size
4 end
5
6 // put random bytes from P3 in outBuf
7 P3.engineNextBytes(outBuf);
8
9
10 // Get data from the urandom_buffer (fill if needed) and XOR with P3
11 len = outBuf.length;
12 offset = 0;
13 while (len > 0) Do
14 fill_urandom_buf_if_needed(); // Check if we need to fill
 urandom_buf
15
16 outBuf [offset] ^= urandom_buf [offset];
17 len -- ; offset++;
18 end

Figure 20 engineNextBytes(byte[] outBuf) pseudo code

Adding data to the urandom buffer (fill_urandom_buf_if_needed): the implementation always
returns data to the caller from the urandom buffer. In case the buffer is empty or the data in it
exceeded Tfresh the buffer is filled by reading a chunk of 32 bytes from /dev/urandom.

Setting an external seed: an external seed is set by trying to write to the /dev/random device
and by setting the seed in the mixing algorithm P3. In case /dev/random is not available for writing
the seed will only be set in the mixing algorithm. We note that the external seed doesn’t replace
the state in any of the generators, but is added to the entropy pools (see [49] and 3.7 for details).
The pseudo code for setting the seed follows.

1 if (/dev/random accessible) then
2 write to /dev/random seed bytes.
3 end
4 P3.engineSetSeed(seed);

Figure 21 engineSetSeed(byte[] seed) pseudo code

Generating a seed: we remind ourselves that each provider should support an API method of
generating a seed. The implementation reads the specified numBytes from /dev/random in order to
generate a new seed.

Default seed: the implementation lets the LRNG use its own default seed and doesn’t include
any alternative default seed on its own. The P3 generator is seeded by reading 20 bytes from the
/dev/urandom interface.

44

/dev/urandom vs. /dev/random: the major difference between the two devices, as explained
in 3.7, is that the /dev/random device blocks if there isn’t enough entropy in its pool. By having this
property, the /dev/random output is considered “extremely strong”7 as it always uses more entro-
py. /dev/urandom implementation is the non-blocking device. Here these two devices are used in
tandem: /dev/urandom as the main device being used in order to produce the actual random bytes
for consumers and /dev/random only if this generator is used in order to generate a seed.

Entropy Use: by using the random devices available on *NIX platforms this implementation uti-
lizes entropy from various inputs (such as input devices, hard disk writes etc.). For details regarding
the exact entropy extracting algorithm the user is encouraged to read [49].

State: the state of this generator is dictated by the states of both generators:
1. The size of the primary entropy pool that is used by /dev/[u]random devices. As seen in 3.7

the size of the pool is 512 bytes. If we’ll allow ourselves to examine only the state size of the
urandom pool, we get a size of 128 bytes=1024 bits.

2. The size of the state of P3 is 20 bytes, which is 160 bits.
This leads us to a combined length of 1184 bits.
Period: the algorithm used relies on various entropy sources and utilizes several invocation of a

SHA-1 variant. Due to the fact that the LRNG uses an external source of entropy, discussing the
period for this implementation is irrelevant.

6.4.4.3 Properties Analysis

6.4.4.3.1 Pseudo-randomness

Assuming we know the implementation is P2.
Brute Force: A brute force attack requires going over the entire space of one of the pools that

are used. Taking the 32 words pool of /dev/urandom it will require , which is not a feasible
attack space. We also have to take under consideration the P3 generator, of which a brute force
would require breaking another space. This takes us to a combined strength of . Here we
assumed that tоΩǎ output is independent of the LRNG.

Entropy use: we note that due to the entropy added to the generator, brute force is only appli-
cable during times that no entropy is added to the states.

Dependence of the LRNG and P3Ωǎ ǎŜŜŘ: since P3 is initialized from the /dev/urandom and then
XORed with bytes from urandom_buf in order to get outputs might lead to weaker effective entro-
py of the whole construct due to both using outputs from /dev/urandom. Furthermore, the compo-
sition of two generators, LRNG and P3, is a choice that resulted from a design/deployment issue.
Although we didn’t find any weakness that resulted from these dependencies this doesn’t neces-
sarily make the scheme more secure.

The usage of /dev/urandom and not get_random_bytes: according to [82] (page 40, chapter
6.2) there is a weakness in environments that only use the device interfaces of the LRNG and don’t
use the kernel API function get_random_bytes. The main weakness is that the urandom pool is not
refilled with entropy from the primary pool when the system only utilizes the devices in order to
produce randomness. Although we couldn’t think of a deployment that would never use
get_random_bytes, our implementation fits the paper’s concern as it only uses /dev/urandom in
order to get random bits.

7
 These words were used by the designer of the linux random generator. For a detailed discussion regarding this,

please refer to [49] chapter 3.4.

45

Performance vs. Security:
1. Only using /dev/urandom: the developers clearly state in the class documentation that the

fact they ŘƻƴΩǘ ǊŜǉǳƛǊŜ getting data from /dev/random as a positive attribute of this imple-
mentation from the fear of the blocking nature of /dev/random. For instance, this choice
makes the implementation vulnerable to the weakness expressed in [49] in case the con-
suming rate is higher than the entropy generation rate. Although noting this is probably a
reasonable decision, a better design would have also allowed the user to configure whether
she prefers to use /dev/random for extra security, while risking blocking her application.

2. Buffering of /dev/urandom and Tfresh as a hidden security parameter: the reasoning for
choosing 100ms as the freshness time isn’t explained nor documented. We note that this in-
troduces another security parameter that can directly contribute to the security of the
scheme. Consider a situation where the buffered 32 bytes (or part of them) were read from
/dev/urandom at a point that the entropy level was poor and immediately after reading
these bytes, the entropy was refreshed. If our implementation wouldn’t have performed the
buffering and simply read from the device, this low entropy might have influenced only
some bytes and not the entire 32 bytes.

6.4.4.3.2 Backwards Security

We are not aware of any attacks on the backward security of LRNG, so we can conclude that this
implementation has a ς backwards security strength as-well.

6.4.4.3.3 Forward Security

Forward security is achieved by having the entropy in the LRNG refreshed throughout the genera-
tor’s work. As shown in 3.7, there is an attack on the forward security of LRNG with a time complex-
ity of έὶ , depending on the attack variant while the memory complexity is ὕρ.

We point out that the fact the generator is always XORed with a P3 instance is irrelevant to the
forward security of the construction. This is due to the fact that no entropy is added to P3s state
during the generator’s work.

6.4.4.3.4 Seed Security

LRNG seed: the seed implementation of the LRNG is based on various machine generated entropy.
A thorough review of the entropy generator mechanism and its weaknesses are presented in [49].

Usage of /dev/urandom for P3’s seed: the fact that the seed for P3 is also from /dev/urandom
can also result in a weaker seed for P3 for reasons noted earlier. If the implementers already gone
to the length of having this generator alongside the native one, a better entropy seed could have
been achieved using /dev/random.

6.4.5 P4: P11SecureRandom ɀ PKCS-11 implementation

An implementation for a PKCS-11 [83] environment; this implementation is out of scope for this
work. The implementation is for environments that, for instance, use smart-cards; then these
smart-cards are accessed via this implementation in order to produce random bits using the smart-
cards hardware random generator.

6.4.6 0σȡ 3ÕÎȭÓ default PRNG implementation: SecureRandom

6.4.6.1 Design Space

The sun implementation can be viewed in the implementation class sun.security.provider.Secu-
reRandom. This is the default implementation of the SecureRandom provider.

46

The implementation provides a platform independent implementation with the use of an un-
derlying algorithm based on SHA-1 (see 6.4.6.2 for algorithm details).

In this implementation we are introduced for the first time to a new class, responsible for the
seeding operation. The class is sun.security.provider.SeedGenerator and has only package level
visibility, so only security provider implementations can use it.

The implementation uses the following members to implement the generator:

1 private static SecureRandom seeder ;
2
3 private transient MessageDigest digest ;
4
5 private byte[] state ;
6 private byte[] remainder ;
7 private int remCount ;

seeder: a class member which holds the implementation for the seeding function. The seeder it-
self is another instance of the SecureRandom generator, which is initialized using the SeedGenera-
tor implementation.

remainder: an array that holds the remainder of the state, as saved between intermediate op-
erations of the generator. remCount is the actual size of the remainder.

state: the state of our generator, the state is updated in each needed run of the generator.
SeedGenerator: the addition of the SeedGenerator class makes the implementation of P3 even

more cumbersome, as now we have another implementation which is only available for seeding
purposes and has different implementation between platforms. This class has a set of resolving
rules of its own in order to decide which seeding algorithm to use. The class diagram of the seed
generator procedure follows.

Figure 22 Seeding Generation Class Diagram

47

sun.security.provider.SeedGenerator has three concrete implementations:
1. SG1: sun.security.provider.SeedGenerator. ThreadedSeedGenerator – the fallback implemen-

tation provided by Sun. A platform independent implementation that utilizes various system
events as entropy sources. More details of this implementation in 6.4.6.2.

2. SG2: sun.security.provider.SeedGenerator.URLSeedGenerator – an implementation that in-
vokes a URL in order to receive random bytes from it. Can be useful, for instance, in order to
use the egd (Entropy Gathering Daemon) [84] or services like www.random.org.

3. SG4: sun.security.provider.NativeSeedGeneator (*NIX) – shipped with UNIX variants. The
class is implemented by extending the URLSeedGenerator for reading from the
file:/dev/random interface as the URL.

4. SG3: sun.security.provider.NativeSeedGeneator (Windows) – a native seed generator, which
is available only on Windows machines. Gets the seed from the MS-CAPI interface,
CryptGenRandom function.

Seed Generator Resolving: the resolving of the proper seed generator is based on a configura-
tion value that exists either in the java.security file or as a system property passed to the VM. In-
case either /dev/random or /dev/urandom is passed as a value to the key securerandom.source the
NativeSeedGenerator is used: On a Windows machine, the Windows variant of the NativeSeedGen-
erator is used and on a *NIX machine, the /dev/random NativeSeedGenerator is used. We note that
even if the user explicitly wants to use /dev/urandom as the source, the implementation still uses
the blocking interface /dev/random. It seems like a decision to guarantee the seed is strong
enough.
{ŜŜŘDŜƴŜǊŀǘƻǊΩǎ API methods:
1. getSystemEntropy(): implemented in the SeedGenerator class itself, produces System based

entropy. Exact entropy sources and algorithm details exist in the next section.
2. generateSeed(byte[] result): used to generate a seed using the resolved seed generator by

invoking the abstract method getSeedByte().

6.4.6.2 Under the Hood

The theoretical PRNG behind: the PRNG uses SHA-1 invocation over the provider's state. The algo-
rithm follows:

í
ì
ë

>++

=
=

=

-- 12mod)1(

0

)(1

160

11 nsx

nseedinitial
s

sSHAx

nn

n

nn

Figure 23 Sun's default generator

Where Xn is the generator’s next output and Sn is the generator’s internal state.
Entropy use: there isn’t any use of entropy to refresh the state of the generator.
Period: consider the function SnĄSn+1 as a random function, following the birthday paradox [85]

we should expect an average cycle length of roughly ς .
State: the state is 20 bytes in size.
Seed: (option to set the seed externally): there is an option to externally set the seed. In case

there is already a state to the generator, the seed doesn’t replace it but only supplements on the
current state. Let ext_seed be the external seed to be used; this is done by the following:

))_(.(1 1 seedextconcatsSHAs nn -=

http://www.random.org/

48

Generating a seed: reminding ourselves that each provider should support an API method of
generating a seed, the implementation invokes SeedGenerator.generateSeed() in order to generate
the seed for the caller.

(Default) Initial seed (S0): the default seed generation process is lazy and performed upon de-
mand, requiring the use of the seeder instance. We continue with a detailed description of this
process. We use the following notations:
1. SG* - the resolved SG (SeedGenerator), as resolved in the description above.
2. seeder ς the instance of the seeding generator.
3. prng - the instance of the actual PRNG used to output the random bits.

1 // Step1 - Get system entropy - seed the seeder , |systemEntropy| =20B
2 systemEntropy = SeedGenerator.getSystemEntropy();
4 ίὩὩὨὩὶ = SHA1(systemEntropy)=SHA1(ίὩὩὨὩὶ);
4
5 // Step2 - Get SeedGenerator dependent random data , |SG*Output|=20 B
6 SG* Output = SG * .generateSeed(20 bytes);
7
8 // Reseed the seeder with SG*Output
9 ίὩὩὨὩὶ = SHA1(ίὩὩὨὩὶ.concat(SG*Output));
10
11 // Step the seeder state and get the initial seed for the algorithm
12 ὴὶὲὫ = ίὩὩὨὩὶ = SHA1(ίὩὩὨὩὶ

Figure 24 P3 default seed algorithm

The system entropy is collected from 3 major entropy sources – time based entropy, system
configuration and system runtime state:
1. Time based entropy – taking one byte of the current-time, in msec.
2. System configuration:

a. Names and values of the JVM system properties.
b. The name and IP address of the machine.

3. System runtime state:
a. The filenames of the java.io.tmpdir folder.
b. Snapshot of memory state of the JVM: total memory allocated and the free memory al-

located for the VM.
The algorithm for generating the system entropy follows:

1 // Time consideration
2 // 64 bits of time since epoch (1/1/1970) Ą 8 LSb bits
3 lsbTimeByte = (byte) System.currentTimeMillis();
4 buffer.concat(lsbTimeByte);
5
6 // System properties
7 For (property in System.getProperties()) Do
8 buffer.concat (p roperty .getName());
9 buffer.concat (p roperty .getValue());
10 end
11
12 // Computer name and IP
13 buffer.concat (ipAddress + õ/ õ + localMachineName);
14
15 // Filenames from the TEMP (java.io.tmpdir) directory
16 For (fileName in files(java.io.tmpdir)) Do
17 buffer.concat (fileName);
18 end
19
20 // Memory stats
21 buffer.concat (totalMemoryLength); // The total VM memory
22 buffer.concat (freeMemoryLength); // The free VM memory

49

23
24 system_entropy=SHA1(buffer);

Figure 25 P3 system entropy gathering

We continue to describe the implementation details of the SG implementations:
1. SG2: sun.security.provider.SeedGenerator.URLSeedGenerator – the implementation opens a

BufferedOutputStream with the default buffer size of 8 KB to the supplied URL.
2. SG4: sun.security.provider.NativeSeedGeneator (*NIX) – implemented by extending the

URLSeedGenerator with the URL file:/dev/random . Source file can be found in the JDK source
archive, under j2se\src\solaris\classes\sun\security\provider.

3. SG3: sun.security.provider.NativeSeedGeneator (Windows) – the implementation invokes a
native method named nativeGenerateSeed. The method is natively implemented using the
WRNG (see 3.8) by invoking CryptGenRandom. Source file can be found in the JDK source ar-
chive under j2se\src\windows\classes\sun\security\provider and the native implementation is
under j2se\src\windows\native\sun\security\provider.

4. SG1: sun.security.provider.SeedGenerator. ThreadedSeedGenerator – the SG1 seeder is only
used as a fallback mechanism for installations where no native support for OS based PRNG is
available (such as Solaris of version < 10). The implementation of SG1 is quite complicated and it
seems to be well thought off. Its description follows.

SG1 detailed description: at the core of the implementation there is a thread that is responsible

to keep a random bytes queue, denote entropy_queue. The implementation uses this thread to
asynchronously fill the random bytes queue. Random bytes are returned to the caller by simply
getting bytes from the queue. In case the queue is empty the caller waits for the queue to fill up
again.

Performance of SG1: we note that the initialization process of this thread, from a performance
point of view is very bad. The first SecureRandom instance that is instantiated blocks in order to
create this thread, until sufficient entropy is in the queue. On a standard PC it took several seconds
to instantiate this thread.

Entropy gathering in SG1: the process gathers entropy by trying to estimate the load on the
machine. The following pseudo-code describes this process.

1 While (counter < 64,000 and quanta < 6) Do
2 // Spawn a bogus - thread
3 new BogusThread().start();
4
5 // How many operations can we perform in 250 msec?
6 For (250 msec) Do
7 syncrhonized (this) {};
8 numOperations++;
9 end
10
11 value = value XOR perm_table[numOperations % 255]; // | value | =1B
12 counter += numOperations;
13 quanta++;
14 end
15
16 queue.push(value); // Add the generated entropy byte to the queue

Figure 26 SG1 entropy gathering algorithm

Whereas BogusThread is a thread that is spawned in order to add some entropy to the thread
scheduler. The BogusThread implementation sleeps for 250ms by iterating 5 times and sleeping for
50ms in each iteration.
We couldn’t find any reasoning as to why the implementation uses the above parameters, such

as the 250ms and spin-count of 64,000.

50

perm_table is a fixed permutation table of 255 values that can be seen in 11.1.1.1. According to
the code comments, the table was generated by generating 64k of random data and using it to mix
the Trivial Permutation.

6.4.6.3 Properties Analysis

6.4.6.3.1 Pseudo-randomness

By using the SHA1 as a primary building block we couldn’t find a better attack than the actual size of
the SHA1 state buffer, which is 20 bytes. We can conclude that the strength of this variant is

strong.
Proprietary implementation: the generator that Sun chose to have as the default generator is

a proprietary implementation that although the use of known building blocks is still utilized in a
proprietary way. The seeding generation algorithm, according to the documentation of
sun.security.provider.SecureRandom, was never thoroughly reviewed nor widely deployed (this can
be seen in the java-doc of the default constructor of SecureRandom).

6.4.6.3.2 Backward Security

None (not entropy based).

6.4.6.3.3 Forward Security

By using SHA1 as the core building block, we actually achieve a forward security that is the size of
the SHA1 output, which is . We note that recent years SHA-1 collisions that were presented in
[86] are actually not applicable for this scenario, since we want to find a previous state (or some of
it) using a current state.

6.4.6.3.4 Default Seed Security

The default seed generation mechanism is one of the most complicated steps in this generator’s
implementation. The implementers went through great length to have enough entropy used in the
default seed generation. In this section we’ll note several vulnerabilities in some of the entropy
sources used.

A rough estimation of the entropy we get from Step1 (system entropy) of the seed generation
follows.
1. Current time – since we only take the lower 8 bits of the current time, it is not easy to guess this

value. This is due to the fact that 8 bits can represent 256 msec, which is a harsh requirement of
the attacker to know the exact time of the time the seed was generated.
Amount of expected entropy bits: 8 bits.

2. System Configuration:
a. Java system properties – this source has very limited entropy as it is predictable be-

tween installations and machines. We’ve tested 4 machines evaluating this. The result is
that per system environment configuration used (Windows or Linux and JRE version) the
system properties were completely identical.
We note that some application servers and popular java libraries, such as log4j, do sup-
port configuration via the java system properties mechanism.
In this scenario it is still easy to predict the names and values from these configurations.
E.g., consider a logging configuration filename for log4: we already know the key of the
property to be log4j.configuration. The value is also easily guessable by trying popular
names such as log4j.xml, log_config.xml etc.

51

We further note that in modern system most configuration are based on external con-
figuration files, for better management and readability, so the actual use of the java sys-
tem properties mechanism is not widely accepted.
Amount of expected entropy bits: ~0 bits.

b. Name and IP address of the machine – we can assume that the attacker has this infor-
mation. This information is relatively easy to get by using various tools, such as nmap.
Amount of expected entropy bits: 0 bits.

3. System runtime state:
a. The filenames of the java.io.tmp directory – this source is harder to predict as it requires

a very intimate knowledge with the specific system, deployment and applications run-
ning on the target machine. We found it hard to actually limit the entropy inputs here.
We note that in most environments periodical cleaning of the temp directory is per-
formed. This leads to the fact that this entropy source is sensitive during times when the
cleaning procedure had just been performed.

b. Memory size snapshot – assuming that most attackers will target an enterprise grade
application; we can assume that the changes in available memory aren’t big. This is due
to the fact that the pattern of enterprise software is to occupy a lot of the memory allo-
cated to the JVM for application level caches. We can assume that changes are within a
few hundred MB for an application that consumes 1-2GB. This gets us to amount of en-
tropy of ~37 bits (100 MB) and ~74 bits (200 MB).
Amount of expected entropy bits: ~37-74 bits.

We observe that if we were to allow ourselves to have access to the attacked machines, all the
entropy sources above would have 0 entropy bits, as it is easy to know every parameter.

We note that the system entropy gathering, despite having very limited entropy which is of less
than the desired 160 bit entropy is not as important for the seed strength since Step2 of the seed
generation can add entropy from native based generators.

Step2 of the seed generation depends on which SG was resolved during the SG resolving pro-
cess. In case one of the native variants (SG2-SG4) of the SG was chosen, we don’t have a weakness
to share and thus we can assume that the strength of this step is the required . We note that
the weakness described in 6.4.4.3.1 due to the use of /dev/urandom isn’t applicable here, as the
seed uses /dev/random.

SG1 Weaknesses: Since on the two major platforms, Linux and Windows, we don’t fall back to
the weaker seed generator SG1 an analysis of the strength of SG1 seems less important. We have
tried to empirically perform tests regarding the amount of entropy we get from running the entro-
py collection procedure in SG1. Our results were quite surprising, as it seems that this procedure
does achieve good entropy results. The fact that numOperations count is projected on 255 values,
using the LSb values seem to remove dependence that naturally exists in the higher bits of the
counter.

Controlling system load by an outside attacker: We state an obvious weakness of the algo-
rithm used for SG1. The attempt of using timing based entropy that correlate to the JVM load
seems very risky. Consider an attacker who can control the perceived load of a machine. Then this
attacker can attempt to produce a heavy load on the application, thus controlling the amount of
entropy that the seed generator, SG1 produces.

52

7 C# (.NET)

7.1 Introduction

The following details were extracted from Microsoft's implementation of .NET's 2 CLI [87], called
CLR [57].
Despite the fact that Microsofts’ CLR implementation is basically a closed source, Microsoft re-

leased to the general public a copy of the CLR source code, named Shared Source CLI (SSCLI) [88]
dated 23/3/2006. We used this source code in order to understand the exact implementation of
the System.Security.Cryptography.RNGCryptoServiceProvider generator. The source in SSCLI was
verified to be the one that is used in the CLI version we covered using the tool .NET reflector [89].
Since we show in the following analysis a bug in the implementation of System.Random we also
made sure that this bug also exists in CLI versions 3.5 (current) and 4 (a release candidate of the
next .NET framework).

In order to verify the code path of the native code used in RNGCryptoServiceProvider we used
the IDA-Pro [4] disassembler.

Giving the fact that most .NET applications are used on Microsoft Windows platforms we will
review the implementation only for Microsoft's Windows platforms.

7.2 System.Random

http://msdn.microsoft.com/en-us/library/system.random.aspx

7.2.1 Design Space

The analysis is based on version 2.0.0.0 of System.Random.
The API of System.Random follows.

1 public Random() ;
2 public Random(int Seed);
3 public virtual int Next();
4 public virtual int Next(int maxValue);
5 public virtual int Next(int minValue, int maxValue);
6 public virtual void NextBytes(byte[] buffer);
7 public virtual double NextDouble();
8 prote cted virtual double Sample();

Figure 27 System.Random API

The actual code, as generated by the Reflector can be viewed in 11.2.1. All methods above invoke
the main internalSample() method, which returns an int from the generator’s internal state.

Ability to reset the seed during operation: unlike its Java counterpart, there isn’t any API
method to reset the seed after the Random instance had been created.

Absent of seed Uniquifier: consequent creation of Random objects can result in having the
same random stream. This means that if different random sequences are important for the applica-
tion care should be taken when creating multiple Random objects. The MSDN documentation
recommends on creating only one Random object and getting random values from it. Another way
to solve this is to add a unique sequence to each Random creation, or some other form of salt. We
note that from a practical point of view most developers would simply create new Random objects
without thinking/knowing about this issue. Java, on the other hand, as covered in 6.3.2, solved this
in its implementation by adding the seedUniquifier.

http://msdn.microsoft.com/en-us/library/system.random.aspx

53

7.2.2 Under the Hood

The theoretical PRNG behind it is the subtractive random number generator algorithm that was
introduced by Knuth in [1]. The general algorithm is detailed in 2.4.5; however we’ll repeat specific
details here that deal with the implementation in C#.

The recurrence formula of the generator follows, whereas the parameters, using the notations
that were used in writing the general algorithm in 2.4.5, here are j=55 and k=34.

ὢ ὢ ὢ άέὨ ς ρȟ ὲ π

The algorithm is implemented by keeping a circular list of 56 random numbers, which is initially
filled as ma[1]=X55, ma[2]=X54,…, ma*55+=X1. The initialization is the process of filling the list from a
seed and then randomizing the list using a deterministic algorithm. The implementation holds two
pointers to the list, inextp and inext, which are kept 21 indices apart. An output of a random inte-
ger is the product of subtracting the two list values at the two pointers. This new random integer is
also stored in the list.

Similarity to numerical recipes in C implementation: The implementation used here seems al-
most identical to one introduced in [2] ran3 function. The main change that exists in this implemen-
tation is that instead of keeping the two indices 31 places apart, like Knuth suggests and like ran3 is
implemented, here the indices are 21 places apart. We note that the open source implementation
of the CLR, the mono project [90] does implement this with the 31 value. A detailed analysis of the
effects of this change is in 7.2.3.1 below.

Algorithm implementation: The detailed implementation in pseudo code follows.
1. Generator state:

a. ma[56] – the array of 56 integers, where only indices 1..56 are actually used, thus we
have 55 random numbers.

b. inext, inextp ς the pointers to the array.
2. Parameters:

a. MBIG= 2147483647 = (ς ρ).
b. MSEED= 161803398 (the “golden ratio” [91]).
c. Seed – an integer seed to use in initialization.

Initialization process: First, we show how the algorithm initializes the generators` state:

1 tmp1 = MSEED ð ABS(Seed);
2 ma[55] = tmp1;
3 tmp2 = 1;
4
5 For i in 1..54 Do
6 index = (21 * i) % 55;
7 ma[index]=tmp2;
8
9 tmp2 = (tmp1 ð tmp2) % MBIG ;
10 tmp1 = ma[index];
11 end
12
13 For j in 1..4 Do
14 For k in 1..55 Do
15 ma[k] = (ma[k] ð ma[1+((k+30) % 55)]) % MBIG;
16 end
17 end
18
19 inext = 0;
20 inextp = 21;

Figure 28 System.Random initialization algorithm

Stepping the generator: stepping the generator is detailed in the following pseudo code.

54

1 inext = (inext % 56) + 1 ;
2 inextp = (inextp % 56) + 1;
3
4 outputNum = (ma[inext] ð ma[inextp]) % MBIG;
5
6 ma[inext] = outputNum;

Figure 29 Stepping the System.Random generator

Choice of m: it’s not documented why the implementers decided to use a different MBIG then
Knuth’s or the one in numerical recipes. It could be that this was chosen to be the biggest positive
number for 32 bits integers in order to support returning more bits to the user in a single cycle of
the generator or due to the point showed in [62] and [92] regarding skews in the bit distribution
tests of bits 22-29.

The selection for k is not understandable and it is a flaw in the algorithm because it causes the
polynomial of the generator to be reducible, as can be seen in the “short cycles attack” described
in 7.2.3.1.

Period: due to the fact that the polynomial of the generator is reducible, the period is input de-
pendent and does not achieve the maximal possible period for all inputs.

State: The state size is 55 values of 31 bits values that are stored in an array, so the total size of
the state is 55*31=1705 bits.

Output: The value returned to the caller at step ὲ is a 31 bit value, which is simply ὢ .
Entropy use: this implementation ŘƻŜǎƴΩǘ add any entropy to the generator.
Seed: the only option to set the seed is during first instantiation of the Random object. The seed

is an integer value of 32 bits, which is expended to the whole state array in the initialization phase.
Default seed implementation: the default seed takes the current tick-count, by invoking Envi-

ronment.TickCount. This value is 32 bits integer and represents the amount of milliseconds that
passed since the computer was restarted, which means the computer’s up-time.

7.2.3 Properties Analysis

7.2.3.1 Pseudo-randomness

Subtractive random generators general note: Knuth states in [1], page 28, that one should think
carefully before using this PRNG implementation since it doesn't rely on a strong proven theoretical
background as other generators and that a lot is known about LCG's properties whereas not much
is known about the subtractive method. He also states that this method has passed all the statisti-
cal tests and has a good long cycle when used with correct parameters.

Small cycles in lsb bit due to bug in the implementation: there is a bug in the implementation
in C# of Knuths̀ algorithm. The bug causes the construction to not behave like Knuth pointed out,
thus it doesn’t necessarily guarantee the long full cycle. We will show a theoretical analysis of short
cycles’ existence in the lsb bit. We will also show concrete examples of inputs to a slightly modified
version of the generator that indeed have a very short cycle in this lsb.

The use of 21 instead of 31 for the k parameter (the distance between the two pointers) causes

the generator to be with a generating polynomial of Ὃὼ ● ● instead of Knuth̀s

polynomial of ● ● . This polynomial ŘƻŜǎƴΩǘ satisfy the requirements of being primitive.
¢Ƙǳǎ ǿŜ ŘƻƴΩǘ ƎŜǘ ǘƘŜ ƎǳŀǊŀƴǘŜŜ ƻŦ ŀ full cycle. Furthermore, as we’ll see this polynomial ƛǎƴΩǘ
even irreducible.

By running the code in http://code.google.com/p/rabinfingerprint/source/browse/trunk/src/o-
rg/bdwyer/galoisfield/Polynomial.java?r=5 we found the irreducible polynomials that factor the
polynomial G(x). These polynomials are:

http://code.google.com/p/rabinfingerprint/source/browse/trunk/src/org/bdwyer/galoisfield/Polynomial.java?r=5
http://code.google.com/p/rabinfingerprint/source/browse/trunk/src/org/bdwyer/galoisfield/Polynomial.java?r=5

55

1. Ὂ ὼ Ὄὼ ὼ ὼ ὼ ὼ ὼ ὼ ρ
2. Ὂ ὼ ὒὼ ὼ ὼ ὼ ὼ ὼ ὼ ὼ ὼ ὼ ὼ ρ
3. Ὂ ὼ ὑὼ ὼ ὼ ὼ ὼ ὼ ὼ ὼ ὼ ὼ ὼ ὼ ὼ
ὼ ὼ ρ

In the next discussion we will see how this reducible polynomial G(x) affects the lsb bit under
the simplification that MBIG is even (and not odd as in the implementation). (This is done because
adding MBIG which is odd, as opposed to the one that was used in numerical recipes in C and in
Knuth, changes the lsb and makes the analysis more complicated). It seems like a relevant assump-
tion to the analysis that emphasizes how fragile the current implementation is.

We denote S as the state consisting of only the lsb bit of each state element, thus |S|=55 bits.
We verified that polynomials H(x), L(x) and K(x) are primitive, thus we know that each polynomial

induces a maximal cycle of ς ρ, where deg is the degree of the polynomial. We denote each of
these cycles as cycle(H) as the cycle of H, cycle(L) as the cycle of L etc. We can consider each state
variable, Si, as a triplet of the projections of Si over G̀ s polynomial factors:

Si mod G(x) = (Si

H, Si
L, Si

K) = (Si mod (H(x)), Si mod (L(x)), Si mod (K(x)))

Reminding ourselves that stepping an LFSR is in fact performing X * S(x) mod G(x) gets us to the
equivalent representation of:

X*Si mod G(x) = X*(Si

H, Si
L, Si

K) = (X*Si mod (H(x)), X*Si mod (L(x)), X*Si mod (K(x)))

So after k steps from the initial states we get:

Sk mod G(x) = ὢ *S0 mod G(x) = ὢ *(S0
H, S0

L, S0
K) =

 (ὢ *S0 mod (H(x)), ὢ *S0 mod (L(x)), ὢ *S0 mod (K(x)))

So the cycle length k is the minimal number for which ὢάέὨὊὼ ρ for each j=1...3. This is

exactly the LCM of the orders of x in the field induced by Fj, where ὛάέὨὊ Ȧ π.

Below are the cycle lengths histogram, where we divide the seeds to buckets according to being
divisible by G(x)’s factors. The cycle length of each bucket is the LCM of the cycle lengths corre-
sponding to the polynomials that ŘƻƴΩǘ ŘƛǾƛŘŜ ǘƘŜ ǎŜŜŘǎ.

Scenario Si
H Si

L Si
K # seeds Cycle Length

1 0 0 * ς ς cycle(K) = ς ρ

2 0 * 0 ς ς cycle(L) = ς ρ

3 * 0 0 ς ς cycle (H) = ς ρ

4
0 * * ḙς

lcm(cycle(K), cycle(L)) =
(ς ρ)*(ς ρ)ḙ ς

5
* * 0 ḙς

lcm(cycle(L), cycle(H)) =
(ς ρ)*(ς ρ) ḙ ς

6
* 0 * ḙς

lcm(cycle(K), cycle(H)) =
cycle(K)= ς ρ

7 * * * ς ὥὰὰ έὪ ὸὬὩ ὥὦέὺὩ lcm(cycle(K), cycle(L), cycle(H)) ḙ ς
Figure 30 Cycle Length Histogram

56

Finding concrete inputs: we managed to find concrete inputs that would get the generator
(having even MBIG) to have these shorter cycles.
1. If we ignore the initialization process that was described in 0 and directly set the initial state lsb

bits to be { 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1,
1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0 } (msb first) we get a cycle. This input
was found by taking K(X)*L(X). We note that brute force won’t work since the probability of get-

ting a state with such short cycle is .

2. We also find a seed, before the initialization process, that its expansion after the initialization
phase corresponds to a polynomial which is a multiply of H(X)*L(X) so it has a cycle.
This input is (47368)10 and it was found by performing a brute-force over the possibilities for the

seed, which was doable because the probability of such input is .

We continue to outline more attacks regarding the general implementation of the algorithm,

and not regarding the reduced cycle length.
Assuming we know the implementation is based on System.Random: this will give us the infor-

mation of the algorithm used for the generator and its parameters.

Brute Force: a brute force attack of the state would require searching a space of ᶻ

 possibilities, which is a very big search space. Following this the next attack assumes we can
get outputs from the generator.

Known cipher-text attack: consider we have the ability to observe integer outputs from this
generator. For instance, consider an application that uses this generator to produce an ID that is
visible to the user of the application. Recall that the generator simply outputs the number which
will now be in index inext. This leads us to the fact that after getting 55 consecutive outputs from
the generator we have the entire state in our hands. From this point on, we are in-sync with the
generator. We note that the assumption of getting consecutive outputs isn’t a very restrictive
assumption.

Not getting consecutive outputs: in the attacks above we required getting 55 consecutive out-
puts. We can further relax this assumption (of consecutive outputs) since we know the parameters
of the generator; we only require knowing the position of the indices during the output. If we were
to know this, we can construct linear equations that would end up revealing the entire state.
!ǎǎǳƳƛƴƎ ǿŜ ŘƻƴΩǘ ƪƴƻǿ the implementation is based on System.Random. If we allow our at-

tacker to gather 55 consecutives outputs from the generator, then we can just try to run the algo-
rithm and see whether we are synced with the generator. It is easy to see that we can achieve a
distinguisher with only 3 outputsȡ ὢȟὢ ȟὢ . After getting these outputs we can verify that
these 3 outputs fulfill the recurrence formula. The amount of false positives here is very low (~2-32),
so only these outputs suffice.

7.2.3.2 Backward Security

None (not entropy based).

7.2.3.3 Forward Security

None – if we have the state in our hands, we can reconstruct the subtraction equations in order to
get to a previous state.

7.2.3.4 Seed Weakness

57

Using time variations as the seed isn't secure enough. Here the seed is the system's "up-time". We
will show the entropy we get in the default seed isn’t enough.

Brute force: as the seed is only represented by a 32 bit integer, the attacker needs to break a
search space of , which using hardware found today is quite feasible.

How many entropy bits do we have in the default seed? The same techniques that we used
in 6.3.3.4 in order to estimate the entropy are applicable here. For the sake of completeness, we’ll
briefly repeat both techniques with different parameters values to adhere to this implementation:

(a) Application startup – knowing the exact application startup time can easily be achieved by
nmap probes or other techniques, if the server responds to these queries. Using this tech-
nique we can pin-point the server`s uptime. Even if we can’t use these tools, we can get the

attack to an order of days, which a day has about milliseconds. Moreover the attacker
could try and force a restart, thus limiting the amount of entropy the seed has.

(b) New objects for each invocation ς assuming the attacker can guess the exact time of the
server up to one minute of error and with the assumption we can know the server uptime,
as described in (a), we can result in having to break only: log2 (1min*60sec*1000ms) = 15.87 ~=
16 bits.

We note that the very limited search space of the default seed makes the brute-force approach
the easiest to mount, as it requires no a-priori information regarding the server current uptime.

58

7.3 System.Security.Cryptography.RandomNumberGenerator

http://msdn.microsoft.com/en-
us/library/system.security.cryptography.randomnumbergenerator.aspx

7.3.1 Design Space

Much like in Java's JCS, .NET has its own cryptographic services implementation; the framework is
implemented in the System.Security.Cryptography namespace.

System.Security.Cryptography.RandomNumberGenerator is an abstract class that is the base
class for every RandomNumberGenerator implementation. Much like Java's JCS framework, here
this framework allows building custom RandomNumberGenerator implementations.

The API is rather straightforward, and provides the following methods.

1 // Creation methods
2 protected RandomNumberGenera tor();
3 public static RandomNumberGenerator Create();
4 public static RandomNumberGenerator Create(string rngName);
5
6 // Generator access API
7 public abstract void GetBytes(byte[] data);
8 public abstract void GetNonZeroBytes(byte[] data);

Figure 31 RandomNumberGenerator API

Drop-in replacement for System.Random: unlike in Java, where the stronger variant of the ran-
dom generator, SecureRandom, still implements the same API as its weaker counterpart, ja-
va.util.Random, here the API for the RandomNumberGenerator implementer is different than the
one of System.Random and the CLI doesn’t provide any adapters between the methods. This forces
the developer to add her own adapter methods in order for the implementation to be a drop-in
replacement for System.Random implementation. Although this sounds like a minor issue we note
that this is in fact a problem that troubles developers as shown in [93] and we believe can even get
developers to use the weaker System.Random due to the richer and more convenient API provided
there.

Resolving: much like in Java, there are several ways to resolve a generator provider. This is doc-
umented in [94]. The main ways are: (a) create the implementer by using the new operator, (b) use
the Create method in the RandomNumberGenerator class or (c) use the Create method with the
explicit name of the provider. A configuration exists in order to control providers by having the
algorithm names associated with the algorithm provider implementation class.

GetNonZeroBytes: another interesting observation in the API is the existence of a separate
method is order to get random bytes that do not contain any zeroes. According to [93] the only
reason for having this method is to support PKCS #1 padding for RSA encryption. We note that the
decision to have this method in the class design is risky: non careful user could use it instead of the
regular one, which will result in a reduced randomness. The reduced randomness exists since we
lose a basic property of a random stream, which says that each bit should have an equal probability
(=1/2) of being 0 or 1. In fact, here, after seeing 14 bits of 0, we can conclude in a 100% probability
that the next bit will be 1. Since this method isn’t intended to be used, we omit this evaluation from
the properties analysis of this generator.

The provider shipped with the CLR is Microsoft’s default (and only) provider implementation,
System.Security.Cryptography.RNGCryptoServiceProvider. This implementation falls quickly to
unmanaged code to generate the random values.

Implementation of the default provider: by having the source code from the SSCLI, we man-
aged to get the implementation used in this provider. The implementation delegates the main
method, GetBytes, to the method CryptGenRandom. Since the code path is not straightforward, we

http://msdn.microsoft.com/en-us/library/system.security.cryptography.randomnumbergenerator.aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.randomnumbergenerator.aspx

59

will continue to describe the code path that leads us to this conclusion. GetBytes is delegated to
Win32Native.Random method, which exists in win32native.cs source file. This method is imple-
mented in the win32 native platform DLL with an entry point of PAL_RANDOM. This method has the
following signature:

1 bool Random(bool bStrong, byte[] buffer, int length);

The parameters in this method are an output buffer, length and Boolean flag indicating whether
it should use the strong variant. The provider invokes this method by always passing a true value in
the bStrong parameter and the user supplied output data buffer as the buffer. The implementation
of the method exists in the native C file, win32pal.c. The implementation then tries to acquire a
context to the Crypto services, by using the CryptAcquireContext function. After successfully acquir-
ing the context the implementation invokes the CryptGenRandom function with the given buffer to
fill.

Acquiring CryptAPI: the implementation always tries to acquire a handle to the CryptAPI which
is a bit redundant since in most cases we only wish to use the PRNG, without the loading of the
entire API implementation. The implementers could have implemented it differently, as pointed in
[95]. This is not a problem per-se, only a redundant memory overhead for the invoking application.
This is a minor overhead, since the implementation does hold the handle only once as can be seen
in the win32pal.c source file.

For complete applicable source code as extracted from the SSCLI, please refer to 11.2.3.

7.3.2 Under the Hood

Windows platform/version dependence: we concluded in the design section that the generator
uses the Windows Random Number Generator, or WRNG. However there was a major change of
the implementation of the WRNG during Windows releases. From code de-compilation performed
on the DLLs advapi32.dll and rsaenh.dll on a Windows 7 32 bit platforms (using the IDA-Pro disas-
sembler); it shows that the implementation is based on AES. The function is called
_AesCtrWithFipsChecks and is implemented in the rsaenh.dll. This is also mentioned in the
CryptGenRandom MSDN entry, which points out that from Windows Vista SP1 the implementation
uses an implementation of the AES counter-mode based PRNG specified in NIST Special Publication
800-90 (see 2.4.10.1 for some details).

In Windows machines earlier than Windows Vista SP1, the WRNG was implemented using the
algorithm specified in FIPS-186-2 appendix 3.1 [29] construction, with the use of SHA-1 as the G
function.

The generator used is the Windows Random Number Generator: at the time of writing this pa-
per we are aware of only one detailed documentation and analysis of the WRNG that was published
by Leo and Gutterman [53]. Unfortunately, their analysis was conducted on a Windows 2000 ma-
chine, which only has the old, FIPS-186-2, generator. The WRNG analysis is summarized in sec-
tion 3.8.

Setting an external seed: We observe that the documentation of .NET standard RandomNum-
berGenerator API doesn’t specifically state how to accomplish this. The documentation of
CryptGenRandom [96] states that the buffer passed is actually an IN/OUT buffer and the data it
contains is used as an auxiliary seed. This is quite confusing, as most developers would simply look
at the immediate RandomNumberGenerator API to check how to give their own seed and not in the
CryptGenRandom API. This is an error in the documentation as shown in [53]. Leo further states
that according to the algorithm analysis, the Buffer passed to the function is actually treated as if it
is empty (since we concatenate the value T to it) and there isn’t any consideration of this input

60

buffer in the generator’s output. Following this we conclude ǘƘŀǘ ǘƘŜǊŜ ƛǎƴΩǘ ŀƴȅ ƻǇǘƛƻƴ ǘƻ ǳǎŜ ŀƴ
external seed to the generator.

We note that allowing a user-defined input to a generator is a recommended functionality, as
described in NIST 800-90, section 7.2, page 12: “This Recommendation strongly advises the inser-
tion of a personalization string during DRBG8 instantiation…”

Default seed: the seed is generated from system entropy sources, in the rekey process of each
of the RC4 generators, in the get_next_20_rc4_bytes method.

State: as mentioned in 3.8, the state of the generator is dictated by the two variables, R and
State and the states of the 8 RC4 generators. This gets us to a state size of 40+8*256=2,088 bytes.

Period: similar to the WRNG, the algorithm used relies on various entropy sources and utilizes
an invocation of a SHA1 variant. Discussing the period for this implementation is irrelevant.

7.3.3 Properties Analysis

7.3.3.1 Pseudo-randomness

As our paper tries to only discuss cipher based attacks, in which we don’t assume the attacker has a
way of accessing the machine or accessing the state as a whole, we do not know of any known
cipher attack on the WRNG. We can only state that obvious brute force attack over the state would

require an effort of ς ȟ ᶻ ᶻᶻ due to the size of the internal state.
The rest of the analysis is shown in 3.8; there we show the attacks that the authors in [53]

found in the WRNG implementation.

7.3.3.2 Backward Security

See 3.8 for details.

7.3.3.3 Forward Security

See 3.8 for details.

8
 deterministic random bit generator.

61

8 PHP

8.1 Introduction

The following analysis is based on version 5.2.3 of the PHP interpreter and runtime libraries [97]
dated 31/5/2007. The PHP engine is code-named Zend and is implemented as a mixture of C and
PHP code. All of the generators are implemented in C.

Popularity of PHP: PHP is the most popular programming language for server side scripting. Ac-
cording to [98], as of November 2006 there were more than 19 million websites using PHP. Fur-
thermore, according to the TIOBE index [3] PHP is the 4th most popular programming language.

Windows vs. Linux: since the common scenario for deploying a PHP based application is on
Linux machines, we’ll consider this as the platform of this analysis.

Functions available: there are two official library PRNG functions called rand() and mt_rand().
There is also another function, lcg_value(), which is used internally by the PHP engine. This function
is also available to the user, however it’s not referenced in the documentation from the rand() or
mt_rand() documentation.

Documentation: unlike previous languages covered, PHP's documentation doesn't state the ex-
act implementation of its default PRNG rand(). Furthermore, the PHP documentation of the weaker
functions doesn’t state the concerns and warnings regarding using some of the generators for
cryptographic purposes.

Operating System PRNGs support: unlike other languages we’ve covered, in the standard PHP
implementation there isn’t a PRNG that allows the user to use an Operating System based PRNG. In
the Zend engine implementation we found usages of an Operating System PRNG in Zend’s engine
memory heap protection. The implementation uses CryptGenRandom on Windows machines and
/dev/urandom on supported platforms. The source code can be viewed in the file zend_alloc.c.
However these usages were sporadic and weren’t externalized as a PHP API function for ease of use
for developers. We note that, naturally, the user has a way to invoke these PRNGs, either as read-
ing from a file (under Linux) or invoking the CryptGenRandom Win32 API method using a PHP Zend
C plugin.

Scope of analysis: This analysis will not cover several other runtime libraries which are shipped
with PHP, e.g., sqlite (which uses an RC4 based PRNG) and openssl. Moreover, there is a special
library for manipulating arbitrary length numbers, called GMP and is based on the GNU GMP (Gnu
Multiple Precision Arithmetic library) (http://gmplib.org/). This is also not covered in the analysis.
Like many other language engines and runtime implementations, the PHP implementation has
different implementation for thread-safe functions (reentrant versions). The thread safe functions
in the Zend implementation are enclosed with a C define named ZTS (Zend Thread Safe). Since most
deployment of PHP use the Apache [99] webserver in pre-fork mode, which utilizes processes as
isolation between requests, we won’t cover these variants in this analysis. We will also leave cover-
ing the flavor mt_rand() for future work, in an effort to keep this work concise

Difficulty of analysis: the Zend engine is a complicated virtual machine implementation for PHP.
We used the documentation in [100] as a reference reading for understanding the implementation
alongside the source code available to download. Functions defined in Zend do not accept parame-
ters as normal functions in C. The parameters are manipulated on a special PHP specific stack; this
caused the analysis to be far from straight forward.

62

8.2 lcg_value() PRNG

http://php.net/manual/en/function.lcg-value.php

8.2.1 Design Space

The function lcg_value() is implemented in the lcg.c source file and declared in the php_lcg.h head-
er file. The actual implementation is in php_combined_lcg function.

This generator is used in numerous places within the Zend engine code; it is also used in the de-
fault seed generation for other API generators, as can be seen in the next sections. As can be seen
in 10 it is also an important building block in PHP’s session generation algorithm.

API: The function doesn't expect any parameters and returns a random value in the range of (0,
1).

8.2.2 Under the Hood

The implementation is based on the generator implementation introduced by L`Ecuyer in [20] that
was covered in section 2.4.3. The implementation is identical to the one showed in [21] chapter
16.1. The documentation of the implementation doesn't refer to any of the above as references.

The theoretical PRNG behind it is a Combined LCG: it combines two MLCGs by subtracting both
states. The formula follows:

MLCG1:
ί ί ὥz άέὨ ά ί τzππρτ άέὨ ς ψυ

MLCG2:
ί ί ὥz άέὨ ά ί τzπφως άέὨ ς ςτω

Combined M LCGs:
ᾀ ί ί άέὨ ά ρ ί ί άέὨ ς ψτ

The source code of the generator doesn’t use the straight forward calculation as written above
in order to be portable between platforms.

Parameters: the parameters used for MLCG1 and MLCG2 are chosen in a way that guarantees
the maximal period of Z.

Output calculation: the output is calculated from Z by multiplying Zn+1 by the inverse of m1. The
output is calculated as follows:

1 output = ᾀ π ? ᾀ ά ρ : ᾀ ;
2 output = έόὸὴόὸȾά = έόὸὴόὸτzȢφυφφρσÅρπ;

Figure 32 Output calculation of Z

Period: L`eculyer, in [20] chapter 5, shows that the period of this generator is

ᶻ

ḙ ḙςȢσz ρπ

State: the state is the state of both MLCGs; each of the MLCGs holds a state variable of roughly

31 bits. This leads to a combined state size of 62 bits.
Seed: there isƴΩǘ an option to externally set the seed. The implementation makes sure the gen-

erator is seeded by setting the seed using the default seed implementation.
Default seed implementation: the default seeding algorithms seeds both MLCGs. The seeding

process uses time and process id inputs as the seed. The pseudo code for the initialization follows.

http://php.net/manual/en/function.lcg-value.php

63

 // I nitializing MLCG1
1 if (gettimeofday is available) then
2
3 c = gettimeofday(); 9

4 ί = c.sec onds XOR NOT(c.micro - seconds);
 // NOT(c.usec) is the bitwise NOT of microseconds
5
6 else
7 ί= 1;
8 end
9
10 // Initializing MLCG2
11 ί = getpid() ; 10

Figure 33 MCGs initialization algorithm

Size of the default seed: we continue to observe the size of each of the MLCGs default seed
size.

gettimeofday function: gettimeofday puts time data in its associated struct from the Epoch
time (1/1/1970 00:00). The seconds are saved in the tv_sec field and the micro-seconds are saved in
the tv_usec field and represent the amount of micro-seconds modulo 1 second, meaning the
amount of microseconds within the tv_sec value. Both fields use an integer to hold the values. The
ǎŜŎƻƴŘǎΩ field can be up to 32 bits and the microsecondsΩ field can be up to 20 bits11 (on a 32 bit

machine); this gets the ▼ value to be 32 bits in size.
Maximum number of Process IDs on a Linux platform: by default Linux wraps around the pro-

cess identifiers when they exceed 32768 . An administrator can increase this value up to ς
on 32 bits machines; however it’s not common that one would need to configure maximum num-
ber of processes to be this high. We also note that the limit per user is even lower than this value,
and defaults to 1024 (as can be seen by running the command ulimit ςn). Following the last note

regarding the maximum number of process IDs we can conclude that the size of ▼ is 15 bits.
Scoping: we note that the seed of the lcg_value generator is globally defined and instantiated

per PHP script. This means that revealing the seed within a specific script is applicable for every
invocation of lcg_value in that script scope. The seed is initialized with the first invocation of
lcg_value.

Entropy use: this implementation ŘƻŜǎƴΩǘ add any entropy to the generator.

8.2.3 Properties Analysis

8.2.3.1 Pseudo-randomness

Assuming we know the implementation is based on lcg_value(): this gives us the information re-
garding each MLCG and the fact that this algorithm is used.

Our goal is getting to the states of both generators, MLCG1 and MLCG2. Since both generators
are in fact MLCG, they don’t poses the forward/backward security properties; thus after knowing
both states we can easily traverse forward or backwards in both generators’ streams to our liking.

Brute Force: a brute force attack requires going over the entire space of the stateȡ .

9
 On a Windows platform we don’t have native support for gettimeofday function. The PHP engine implementation

has its own implementation for this for Win32. Can be seen in time.c and time.h
10

 In case we are in the multi-threaded implementation, meaning ZTS is defined, this would be the thread-id.
11

 The precision of this timer depends on the platform used. According to
http://stackoverflow.com/questions/88/is-gettimeofday-guaranteed-to-be-of-microsecond-resolution on Intel proces-
sors the micro-second precision is guaranteed, but on some other platforms it can be as low as 10 micro-seconds.

http://stackoverflow.com/questions/88/is-gettimeofday-guaranteed-to-be-of-microsecond-resolution

64

We follow with a more efficient attack that uses several outputs of the subtraction, z. We note
that we ignore the final step of the output that gets z to be a fraction between (0, 1) as it is easily
reversible. We will now show how we can effectively reverse the subtraction and get the states of
both generators.

Known cipher text attack: we assume that we can get at least 3 consecutive outputs from the
generator. Let’s write the equations for 2 consecutive outputs of the generator:

ᶻ ᾀ ί ί άέὨ ά ρ

ᾀ ί ί άέὨ ά ρ

ᶻz ᾀ ί ὥz άέὨ ά ί ὥz άέὨ ά άέὨ ά ρ

z modulo: We denote ᾀ and ᾀ as the values before performing the ά ρ

modulo. Given ᾀȟᾀ , we have four possibilities for ᾀ and ᾀ :

(1) ᾀȟᾀ
(2) ᾀ ά ρȟᾀ
(3) [ᾀȟᾀ ά ρ
(4) ᾀ ά ρȟᾀ ά ρ

Our attack will go over all those 4 possibilities, so from now on, we’ll omit the mod (m1-1).
We note that if both MLCGs were to use the same modulus (ά ά ά), then solving (*)

and (**) to find ί ὥὲὨ ί from ᾀȟᾀ would be simply a matter of solving two linear
tions άέὨ ά.

We’ll now show how to solve (*) and (**) to find ί ὥὲὨ ί from ᾀ ὥὲὨ ᾀ in the
real situation of having different m1 and m2.

Equivalent representation the equations above can be written as:

(1) ᾀ ί ί

(2) ᾀ ί ὥz Ὧ άz ί ὥz Ὧ άz

We also get the following requirements:
(3) π ί ά
(4) π ί ά
(5) π ί ὥz Ὧ άz ὥ
(6) π ί ὥz Ὧ άz ὥ
(7) ίȟί ɴὔ

By extrapolating ί from (1) we get ί ί ᾀ , by substituting this in equation (2) we
get:

ᾀ ί ὥz Ὧ άz ί ᾀ ὥz Ὧ άz

ᾀ ί ὥz Ὧ άz ί ὥz ᾀ ὥz Ὧ άz
ᾀ ᾀ ὥz Ὧ άz Ὧ άz ί ὥ ὥ

Finally, we extrapolate ί and get:

65

ί
ᾀ ᾀ ὥz Ὧ άz Ὧ άz

ὥ ὥ
 z

ί ί ᾀ z z

A simple solution of (*) and (**): first we’ll introduce a naïve solution and we’ll follow with

more efficient one. In order to solve the equations we’ll run over all possibilities of ▓ ▓z ᶻ (*4

due to the four possibilities ᾀ ȟᾀ as mentioned above), solve (1) and (2) and make
sure all requirements and equalities outlined in (3)-(7) are met. This gets us to the conclusion that
after getting two consecutives outputs we can effectively reveal the entire state of both generator
(i.e. ί and ί) in an effort of ▓ ▓z ᶻ operations. From (5) and (6) we know that Ὧ

ὥ ὥὲὨ Ὧ ὥ so we need to do ╪ ╪z ᶻ operations, which mean an effort of ᶻ

ᶻ . This is much better than the brute-force approach that would require an effort
of ς .

Validating our solution: we are trying to find a state of 62 bits and we have an output of 62
bits, so information theory suggests that we will have only a few possible solutions. So one more
output will be enough in order to validate which solution is the correct one; thus the use of the
third output.

A more efficient version of solving (*) and (**): we observe that ί < ά ; this means that we
can safely perform a modulo of ά operation on (*) without losing information on ί. This gets us
to the following revised (*) equation:

ί ᾀ ᾀ ὥ Ὧά zὥ ὥ άέὨ ά

As we can see taking modulo of ά removed the dependence of Ὧ and we only need to iterate
over all the possibilities for Ὧ. This gets us to needing an effort of only ▓ᶻ ᶻ
ȟ ḙ . Note that now we need to calculate ὥ ὥ άέὨ ά , which can be done

efficiently. The remainder of the solution procedure is the same as before (i.e. verifying (3)-(7) for
each ί, ί we get when iterating over Ὧ).
!ǎǎǳƳƛƴƎ ǿŜ ŘƻƴΩǘ ƪƴƻǿ that the above generator is used. If we were to allow ourselves to get

3 consecutive outputs, then we can try and solve the equations as outlined above as a distinguisher
for this generator.

8.2.3.2 Backward Security

None (not entropy based).

8.2.3.3 Forward Security

Since both generators are MCGs, they don’t have the forward security property.

8.2.3.4 Default Seed Weakness

For this analysis we’ll assume the gettimeofday function is available. Otherwise, the seed for the
first generator is simply a constant.
Let’s examine how much entropy we actually have in both seeds; we’ll use ί and ί to denote

the seeds of both generators respectively.
As in other analysis of time variants we carried throughout this paper, we can assume that the

seed is generated either at the startup of the application or during the first use of lcg_value.

66

▼ (process-id): as mentioned, the actual entropy of this seed is far from the required 31 bits. It
is merely 15 bits of entropy. However this can be reduced even more with the following observa-
tions.

Linux Process ID Allocation Algorithm: there is a new process ID allocation algorithm in Linux as
can be seen in [101,102,103]. The old algorithm used to increment the process-id until reaching the
/proc/sys/kernel/pid_max value and then wrapping around, finding empty slots to fill. In an empiri-
cal test, we verified that the new algorithm still allocates processes in a sequential manner. We
verified this in the kernel source code version 2.6.33 dated 24/2/2010; the new algorithm is used
and implemented in pid.c. There are many known processes that are allocated during system
startup. This means that the actual entropy of this value is even lower. By observing, for example,
an actual Linux server deployment that utilizes Apache [99] as its webserver and running on Redhat
Linux [104] we saw that almost all processes up to roughly PID=5000 are system processes. This can
serve as the attacker lower process-id bound psmin. This gets us to effective entropy of 14 bits.

s10 (output of gettimeofday): as in other analyses carried out throughout this paper, we can as-
sume that the generator was seeded close to the application startup, and thus server startup. If we
assume this we can pin point the server startup to a specific day in a year, then the entropy will be
about 16 bits. Nevertheless, we still have the micro-seconds within this day, which means another
20 bits. Because we xor those two numbers, and because the variable part of both of them is in the
lsb, the entropy of the xor output has only 20 bits. Note that if another operation was performed
instead of xor one could have achieved the maximum entropy of 32 bits.

 In 10 we show a concrete attack on the session ID generation in PHP that utilizes our attack on
the pseudo-randomness of this generator.

67

8.3 rand() PRNG

http://php.net/manual/en/function.rand.php

8.3.1 Design Space

The implementation of the rand/srand function resides in rand.c source file and declared in
php_rand.h header file. The implementation of the API functions is located in php_rand() and
php_srand functions.

API: the rand() function accepts two optional parameters: min and max. The function returns a
random number from the range [min, max], whereas the default values are min=0 and
max=RAND_MAX. Like in the C implementation there is a complementary seeding function called
srand. The caller doesn't have to call the seeding function and the runtime makes sure the genera-
tor is initialized upon calling rand. For further details regarding the seed, refer to 8.3.3.2 section.

8.3.2 Under the Hood

There isn’t a native implementation for the generator, and the implementation resolves to an
appropriate C implementation. The resolving order follows.

Resolving: the implementation first checks if the platform supports the random functions fami-
ly that were covered in 5.4. If not found, it searches for the lrand48 flavor that were covered in 5.5.
If not found, it falls back to the default C rand() implementation that was covered in 5.3.2.12

RAND_MAX: the RAND_MAX constant, the maximum number that the generator can return to
the user, also depends on the flavor used: in C rand and in the reentrant flavor it is ς , in the other
variants it is 2147483647 (ς ρ).

Seed: there is an option to externally set the seed, using the srand PHP API function. The func-
tion uses the appropriate seeding function according to the resolving specified above.

Scoping: much like in the lcg_value generator, the seed for the rand function is globally saved
per PHP script in its own variable.

Default seed implementation: the implementation implements a default seed, regardless of
the flavor used. The algorithm for generating the seed is defined in a macro called GENERATE_SEED
that is defined in php_rand.h file. The algorithm performs the following steps:
1. Time (Tseconds) - takes the current time using the time() function. The time() function returns the

amount of time in seconds that had elapsed since the Epoch.
2. Process ID (pid) ς takes the current process ID using the getpid() function.
3. lcg_value/php_combined_lcg (lcg_value) – takes a single output from the lcg_value generator

that was covered in 0.
The output of these steps is a multiplication to yield 32 bits in the following way:

1 s0 = T seconds * pid * 1,000,000 * lcg_value;

Figure 34 PHP rand() default seed algorithm

The size of this default seed is 32 bits. If the random() or the rand() flavor is used, this value is
cast to an unsigned int.

8.3.3 Properties Analysis

8.3.3.1 Pseudo-randomness

All properties analysis of the generator depends on the C flavor used. The reader is encouraged to
go to the appropriate sections in order to read the analysis.

12

 In case ZTS is used, the implementation uses the rand_r implementation.

http://php.net/manual/en/function.rand.php

68

8.3.3.2 Default Seed Analysis

We examine how many entropy bits we have in the default seed. As we showed in 8.2.2, the PID
has an entropy value of 14 bits. Assuming we can pin point Tseconds exactly (like always – it’s either
system startup or current time) this has no entropy. We are left with the output of lcg_value, which
can have an output of maximum 31 bits.

lcg_value default seed: remembering that the default seed of the lcg_value is also comprised of
the process-id and time variations, we can further try and limit the entropy. Since this is the same
process ID, this doesn’t add entropy. However, the default seed of lcg_value also utilizes micro-
seconds precision using the gettimeofday function. Assuming we can know the system startup to a
precision of more than a second is too hard of an assumption. This leaves us with the entropy of the
micro-seconds field of 20 bits.

Total: adding the 20 bits to the 14 bits of the PID yields 34 bits of entropy, which is reduced to
32 bits due to the use of a 32 bits data type.

We note that if we were to allow our attacker to have stronger abilities, this can easily be re-
duced. As an example: if the attacker has access to the processes that run on the machine. This can
give the attacker the knowledge of the PID.

The use of lcg_value in the default seed generation could yield some knowledge regarding the
lcg_value generator. Considering a complex script (or a chaining of invocations between scripts)
that utilizes both rand and the lcg_rand generator. Since the seed of the lcg_rand is the same be-
tween invocations in the scope of the same PHP script, getting an output from the rand generator
can reveal data of the lcg_rand inner state. This is because this weak flavor has no forward security,
so we can reverse the generator and get to the initial seed. From there we can try and get to the
lcg_value output. This can potentially aid us in a different attack on lcg_value; e.g., by using this
value to invalidate a guess.

69

9 Summary and Conclusions

In this work we presented a detailed analysis of the pseudo random number generators in the
following programming languages: C, Java, C# and PHP.

In the introductory sections we provided the required theoretical common ground regarding
PRNGs. Furthermore, we showed concrete examples of attacks on systems that were possible due
to problems in the underlying PRNG. By showing these examples we tried to convey the importance
of using a well thought off, studied generators (and seed generation algorithms) with proven secu-
rity properties.

We presented a complete analysis of the PRNGs available in the above mentioned programming
languages, complete with the analysis of their security properties. We demonstrate that the de-
signers of each programming languages decided on different generators to be available to their
users. The generators span from the LCG generator to Operating System based generators. We
provided a strict evaluation of the strength of each implementation, including an analysis (if appli-
cable) of their default seed implementation.

During the analysis we found a potential bug in the C# implementation of the subtractive ran-
dom number generator. The bug causes the generator to stir away from sound mathematical theo-
ry and causes it to have shorter cycles than expected. We further show (in 10) a concrete attack of
the session ID generation in PHP that was based on our analysis of the generator in PHP.

In summary, our impression is that programming languages SDK designers and developers
should make more detailed (and correct) documentation available for developers. Where possible
they should support flavors that rely on strong cryptographic building blocks (such as the recom-
mendations in the NIST 800-90 standard) and well-studied ways to collect entropy for the seed. It’s
important to note that most usages of random numbers aren’t only for security systems. Almost
every developer, throughout her career would encounter the need to perform randomization of
some sort. Our hope is that this work could be of guidance to her.

We summarize our findings in the following table.

70

Language Flavor Platform PRNG Entropy? Period
State
Size
(bits)

9ȄǘΩ
Seed?

Default Seed Security Properties

 State
Default
Seed

Forward Backward

C
(MSVCRT)

rand ANSI-C Windows LCG No ς 31 Yes Constant ς N/A No No

C
(MSVCRT)

rand_s Windows WRNG Yes N/A 16,704 No

System
entropy
sources
(WRNG)

ς N/A
ς

between
rekeying

None
between
rekeying

C (glibc) rand *NIX Invokes the generator in the BSD family random() function

C (glibc) BSD random G0 *NIX LCG No ς 31 Yes Constant O(1) N/A No No

C (glibc) BSD random G1 *NIX AFG No ς ς ρ 224 Yes Constant ς N/A No No

C (glibc) BSD random G2 *NIX AFG No ς ς ρ 480 Yes Constant ς N/A No No

C (glibc) BSD random G3 *NIX AFG No ς ς ρ 992 Yes Constant ς N/A No No

C (glibc) BSD random G4 *NIX AFG No ς ς ρ 2,016 Yes Constant ς N/A No No

C(glibc) SVID rand48 *NIX LCG No ς 48 Yes None ς N/A No No

Java Random Independent LCG No ς 48 Yes Time ς ς or
ς

No No

Java SecureRandom P1 Windows WRNG Same as in MSVCRT rand_s

Java SecureRandom P2 *NIX
LRNG +
P3

Yes N/A 1,184 Yes

System
entropy
sources
(LRNG)

ς Entropy
ς or
ς

ς

Java SecureRandom P3 Independent SHA1 No ς 160 Yes
System
entropy or
WRNG/LRNG

ς Entropy ς No

Java SecureRandom P4 PKCS-11 N/A – not covered in analysis

C# (.NET) Random Windows LFG No N/A 1,705 Yes Time O(1)
O(1) or
ς

No No

C# (.NET) RandomNumberGenerator Windows WRNG Same as in MSVCRT rand_s

PHP lcg_value() *NIX CMCG No ς 62 No
Time and
PID

ς ς No No

PHP rand() *NIX
Falls back to the C implementation in the following order: BSD random, SVID rand48,
ANSI-C rand

ς No No

71

Notes regarding the summary table:
1. Security Properties – the security properties analysis is based on the analysis conducted in this paper. This means that we assume we can get

one or more outputs from the generator.
2. Platform – the platform written per each variant is the platform that we used in the analysis. For instance, PHP is also available on Windows

machines, however we conducted the analysis only on *NIX platforms.
3. tŜǊƛƻŘ ƛƴ /ІΩǎ {ȅǎǘŜƳΦwŀƴŘƻƳ ƎŜƴŜǊŀǘƻǊ – due to the fact that we found a bug in the analysis (see section 7.2.3 for details) we couldn’t

properly analyze the period of this flavor.

PHP mt_rand()
Mersenne
Twister

N/A – not covered in analysis

Figure 35 Analysis Summary Table

72

10 Appendix A: !ÐÐÌÉÃÁÔÉÏÎ !ÔÔÁÃËȡ !ÔÔÁÃË ÏÎ 0(0ȭÓ 3ÅÓÓÉÏÎ)D Allocation

10.1 Introduction

As PHP is mostly used as server side scripting; much like .NET, it comes with its own session
management module. Although this work’s focus is to investigate the implementations of
PRNGs in popular programming languages we also present here a novel and efficient attack
on the session-id generation in PHP which uses the security analysis of lcg_value carried in
the previous section.

10.2 Session ID Allocation Algorithm

The session ID allocation algorithm in PHP is implemented in the function
php_session_create_id, in the session.c source file.

Allocating of a new session-id is performed during the procedure of handling new ses-
sions. The allocation is performed using the following steps:
1. Get the remote IP address that this request originated from. The remote IP address is

obtained by looking at the value of the HTTP header REMOTE_ADDR HTTP, which is
available as standard execution environment information
(http://php.net/manual/en/reserved.variables.server.php). In case the header does not
exist, an empty string is used.

2. Get the seconds field of gettimeofday.
3. Get the micro-seconds field of gettimeofday.
4. Get a single output from the PRNG generator php_combined_lcg that was initialized

with the default seed, which is the generator we covered in 0. The value is taken as a
string after multiplying the result by 10 and taking 8 places after the decimal dot. This
effectively yields 9 digits.

5. Mix the concatenation of the above inputs using a hash function, which can be either
SHA1 or MD5. The default is MD5.
All the outputs in steps 1-4 are converted to string values using sprintf. The input buffer

to the hash function is therefore a char array. Assuming the default MD5 function is used,
the result is 128 bits session-id, which is converted to 32 ASCII characters.

Support for external entropy file: there is support for giving external entropy to the
process, which is supplemented to the sources in steps 1-4 as another input to the hash
function. The support is by specifying a value to the key session.entropy_file which is an
entropy file source and session.entropy_length which is the amount of entropy to read from
the file during the allocation process. One can use this setting by pointing it to
/dev/[u]random for instance. The configuration is done by configuring these values in the
php.ini runtime configuration file. ¢ƘŜǊŜ ƛǎƴΩǘ ŀƴȅ ŘŜŦŀǳƭǘ ŜƴǘǊƻǇȅ ǎƻǳǊŎŜ and ses-
sion.entropy_length defaults to 0 in the default PHP runtime configuration (as documented
in http://php.net/manual/en/session.configuration.php). We do note that the implementa-
tion reads MIN (2048, session.entropy_length) bytes from the entropy file during the alloca-
tion process.

Following this, in the next analysis, we assume no external entropy source was de-
fined.

In the next two sections we outline our attack on the session id allocation algorithm of
PHP. Our attack is comprised of two steps: (a) Finding out the state of the generator using

http://php.net/manual/en/reserved.variables.server.php
http://php.net/manual/en/session.configuration.php

73

some guess work and the attack we showed on the generator in the previous section, (b)
utilizing the attack to effectively hijack a valid session-id.

Entropy injection during the allocation process: we note that the session id allocation
algorithm is well thought and the developers didn’t only rely on the security of the PRNG to
allocate the session-id (like we saw in [42]). This can be seen in steps 1-3: the algorithm
injects more entropy to the session id generation process, besides from the entropy of the
PRNG itself.

10.3 Extracting the state of the generator

The attack requires getting 3 consecutive valid session-ids from the server. As we’ll show,
the effort required for extracting the generator’s state is , which can be achieved using
today’s moderate machines.

We denote Xn as the buffer generated by steps 1-4 and we’ll denote the session-id gen-
erated from this buffer using f(Xn), which is the invocation of the hash function. We assume
that the default hash function, MD5 is used. However, we note that using SHA1 doesn’t
affect our attack at all. We further denote as S(Xn) the state of the generator g whose out-
put was used in step 4.

The extraction attack outline follows: First, we perform 3 consecutive queries to the
server in order to get 3 valid session-ids, f(X1), f(X2) and f(X3). Since we get valid session-ids
originating from our machine, the remote-address adds no entropy, as it is known to us (it’s
our machine’s IP). So the only entropy comes from the time parameters; we’ll bound it and
show that the space of Xn is small enough. Next, we perform an exhaustive search to find X1
from f(X1), X2 from f(X2) and X3 from f(X3). From the X1, X2, X3 we just found we get the corre-
sponding 3 outputs of the generator. Finally, we extract the state S(X1), S(X2), S(X3) using the
method outlined in section 8.2.3.1. We use the third output to validate our finding.
We’ll now describe the attack in more details:
Guessing Xn: we follow with a detailed analysis of how many bits we need to guess in

order to get to Xn.
1. Remote Address – as mentioned, we know this value.
2. Time (seconds) – we assume that the session-allocation procedure is one of the first

operations that the server performs following a request. This assumption makes sense,
as the session-id is probably needed in order to perform operations within the applica-
tion. We further assume that we have the means to know the time of the server, to a
seconds’ accuracy, and the uncertainty of the request handling time is less than a se-
cond. This is reasonable if we consider a use of NTP by the server or getting the server
time using other methods outlined in this paper. This means we have 0 entropy from
this parameter.

3. Time (micro-seconds) – we denote Tmicro as the upper limit of the uncertainty, in micro-
seconds, we allow ourselves to have regarding the time of the operation. This means
that we need to guess log2 (Tmicro) bits. We assume that in some conditions we can guess
the time up to 5 milliseconds. This gives us an upper limit of log2 (5,000) ḙ 12 bits.
This follows an assumption that that the server would take up to 1 msec to perform the
actual session-id allocation from the instant the request reaches the server. The as-
sumption of network latency uncertainty is actually 3-4 msec; this is from empirical data
we gathered.

4. DŜƴŜǊŀǘƻǊΩǎ ƻǳǘǇǳǘ – reminding ourselves that the output of the generator is a fraction
between (0, 1) and the algorithm in step 4 takes only 9 digits from the generator’s out-

74

put, we need to take into account rounding issues. Denote epsilon=4.656613e-10, z –
the real generator’s output, before multiplying it with epsilon, z’ – a different genera-
tor’s output that resulted in the same output that was taken in the algorithm. By exam-
ining the maximum difference between the two candidates, we see that we would need
to test 3 situations. This follows from this observation:

z, z’ go to the same value after the truncation =>
The corresponding fraction (before the truncation) will be the same up to the 9th digit =>

epsilon * | z – z’ | < ρπ
| z – z’ | < ρπ/epsilon

| z – z’ | < ρπ * 4.656613e-10
| z – z’ | ≤ 2

So there are at most 3 possibilities for the generator output given the truncated frac-
tion.

To conclude: Xn has only 43 unknown bits, 12 from the microseconds and 31 from the
generator output.

Extraction of the generator state effort: following the observations above, given an
output f(Xi) we would need to perform a search over a space of ς to find Xi (we’ll enumer-
ate all the ς). Since we do it for the three consecutive outputs, we get an effort of σz ς .

Now, In order to get to S(Xn) we now need to mount the attack we outlined in 8.2.3; the
effort we needed there was ͯς . Remembering that due to rounding issues we actually
need to perform this 3 times per Xn yields an effort of σz ς per Xn. Since we perform the
attack for two Xn and the third one is only used for verification gets us to a final effort of:

σϽς σϽςϽς ḙ

Notes regarding attack assumptions and vectors:

1. Consecutive outputs ς we are aware of the problematic assumption of getting consecu-
tive outputs. We note that if we allow ourselves to only know the distance (amount of
session ids generated) between the outputs we could still try to mount the attack above
(In Attack 1 described in the next section we’ll show a practical way to do so). However
this might yield a more expensive attack to get the state of the generator, since the ef-
fort would not be ς , but τz ὥ ς , where k is the amount of invocation/distance
between the first two outputs and ὥ is the same as shown in 0. Another possible relax-
ation is to assume that we can bound the distance between the session-ids. E.g., if we
were to know that we get the three sessions in a range of 1000 sessions, and then we
can say that we have 1000 options for the difference between f(X1) and f(X2) and anoth-
er 1000 for f(X2) and f(X3), thus getting 1,000,000 options.

2. Attack the initial seed of the generator - we note that breaking the initial seed is still
applicable; however it’s not as beneficial. Due to the fact that we will need to know how
many invocations took place after it was generated to get ourselves synched with the
current state of the generator.

10.4 Mounting the Session Hijacking Attack

In the previous section we’ve managed to get the state of the generator; since no new
entropy is added to the generator itself and it poses no forward security we can now trav-
erse to older or newer states as we please. We now continue to describe 3 online attacks

75

that would allow us to get to a valid session-id of a user and thus hijacking her session. The
attacks are presented in a decreasing strength we allow our attacker to possess.
For the sake of convenience, we’ll denote eve as the attacker and bob as the attacked

user, whose session we hijack.
Attack 1: assuming eve is a passive MITM (man in the middle), thus she can passively

listen to all the traffic of the server. In order to make the attack scenario realistic and non-
trivial, we further assume that the communication of the server is encrypted using https
[105].

Since eve listens to the traffic, she knows the originating IP (from a lower level protocol)
of each request and the timing of the requests to a milli-second precision.

Denote the session expiry timeout time as Texpiry. eve monitors the traffic of the server
for Texpiry and keeps track of the originating IPs for the requests during this period. After
Texpiry eve assumes that each new request from an IP or an existing IP that hasn’t accessed
the server for Texpiry resulted in creation of a new session-id.

eve then requests 3 valid session-ids from her own machine and mounts the attack we
described in the previous section to reveal the internal state of the PRNG. While mounting
the attack eve continues to keep track on the amount of new session-ids created (note that
even if the outputs are not consecutive eve knows the amount of PRNG executions).

Now eve continues to monitor the traffic of the server and chooses a new session-id,
Sidbob that was created to her liking. eve knows how many invocations of the PRNG were
performed (amount of new session-ids created) since the time she revealed the generator’s
state. Furthermore, eve knows the time of Sidbob to milli-second accuracy. The only un-
known is the exact time of micro-second, within this milli-second that Sidbob was created. To
solve this eve tries 1000 values of micro-seconds to generate 1000 potential session-ids and
sends to the server for validation. One is expected to be a valid session-id, which is the
attack goal.

The above attack has a weakness that the server can suspect that an attack on bob’s
session, actually ōƻōΩǎ IP address, undergoes and can decide to stop serving requests to
bob. To avoid this, we can further improve our attack as follows.

eve won’t attack a specific user, but instead she will keep track of 1000 new session ids
created by the server, say in 1000 seconds. As described above, for each such session crea-
tion the only uncertainty is in the exact creation time, which is in the order of 1000 micro-
seconds. So to achieve one valid session-id it’s enough for eve to iterate over the 1000
session-ids, guess the exact time of each session-id creation, construct a session-id accord-
ingly and try to validate it by sending it to the server. In expectance this will yield a single
valid session-id.

This variation has two main advantages: (a) we only send one invalid cookie per (faked)
IP so our attack is more concealed, (b) in the previous scheme the server could protect itself
from the attack by simply blocking the attacked IP (and by doing that the server will also be
protected from our attack if we are attacking from several machines). However in this varia-
tion the server doesn't know which session-id we are going to attack, thus making it much
harder for the server to protect itself.

Note: we assumed that we can monitor the number of session-ids created (and corre-
spondingly, number of PRNG advancing) by listening to the secured https communication
and following all the IPs of this communications. Using an IP from a lower level protocol in
order to keep track of users that are behind a proxy/NAT can be problematic, since the IP
sent would be of the NAT/proxy and not the actual user. This can be solved by using infor-

76

mation regarding side-channels of HTTPS recently covered by Schneier in [106] regarding
the paper [107]. For instance, we can assume users that reach the homepage or login page
would get a new session id. By using side-channels we can try and deduce that indeed the
user is viewing the mentioned pages.

Note: as mentioned above, involving the server isn’t the best way to validate our guess
since the server can easily understand that an attack is performing and could delay re-
sponses or completely block our IP. Nevertheless, we expect that most applications
wouldn’t go to the trouble of theses pre-cautions and even if they will, we can always
mount the attack from multiple machines, in order to conceal our attack.

Attack 2: assuming eve can only passively listen to all the traffic between the server and
bob. The attack is similar to the attack proposed before; however we now have an uncer-
tainty regarding the amount of new session-ids issued by the server.

Number of session ids: in order to try and predict the number of invocations, Nnew-

sessions, we will make an educated guess and involve the server in validating our guess. Our
guess will be based on the assumption of the average amount of new sessions in a specific
time frame. This assumption is application specific, as it translates from the expected load
of a specific website. We will denote the lower bound of this guess as Nnum-sessions

min and the
upper bound as Nnum-sessions

max.
As before, we still have an uncertainty of 1000 micro-seconds regarding the exact time

of the session id creation. Mounting the attack requires iterating over the values of 1000 *
(Nnum-sessions

max - Nnum-sessions
min) and handing the constructed session-ids to the server for

validation.
Attack 3: the only assumption regarding eve is that she can interact with the server. As

expected this attack requires the largest amount of guess work and interaction with the
server in order to validate our guess.
Here we don’t know a concrete IP, nor do we know of a valid IP. Nevertheless, we ob-

serve that the implementation only takes the REMOTE_ADDR and doesn’t look into the
X_FORWARDED_FOR header, which is a bad practice that causes a weakness in the system
that the attacker can exploit as follows. Effectively, if the user is behind a proxy, the proxy’s
address will be sent as the REMOTE_ADDR. A lot of traffic is generated from parties behind
a proxy server, mainly for organizations. Even worse, some proxies don’t even send the
REMOTE_ADDR header, thus yielding in an empty string for this parameter. We can con-
clude that for practical attacks, this isn’t a real obstacle. We can always either target all the
empty REMOTE_ADDR values for scenarios that the header wasn’t used or target a known
big corporation by getting its proxy’s IP addresses.

From here on the attack continues exactly like described in Attack 2, by bounding the
session-id exact creation time.

In conclusion: we showed concrete examples of attacks on the session-id generation in
PHP that rely on the fact that not enough entropy is being injected when generating new
sessions id and that we can relatively easily break the PRNG’s state.

We note that in order to validate if we got a valid session-id we simply use some indica-
tion within the application, e.g., seeing the user-name or a shopping cart. This validation
step is important as PHP simply generates a new session-id incase the session-id it got is
invalid.

77

11 Appendix B: Code Snippets

11.1 Java

11.1.1 Java: SecureRandom

11.1.1.1 perm_table

56, 30, - 107, - 6, - 86, 25, - 83, 75, - 12, - 64,
5, - 128, 78, 21, 16, 32, 70, - 81, 37, - 51,
- 43, - 46, - 108, 87, 29, 17, - 55, 22, - 11, - 111,
- 115, 84, - 100, 108, - 45, - 15, - 98, 72, - 33, - 28,
31, - 52, - 37, - 117, - 97, - 27, 93, - 123, 47, 126,
- 80, - 62, - 93, - 79, 61, - 96, - 65, - 5, - 47, - 119,
14, 89, 81, - 118, - 88, 20, 67, - 126, - 113, 60,
- 102, 55, 110, 28, 85, 121, 122, - 58, 2, 45,
43, 24, - 9, 103, - 13, 102, - 68, - 54, - 101, - 104,
19, 13, - 39, - 26, - 103, 62, 77, 51, 44, 111,
73, 18, - 127, - 82, 4, - 30, 11, - 99, - 74, 40,
- 89, 42, - 76, - 77, - 94, - 35, - 69, 35, 120, 76,
33, - 73, - 7, 82, - 25, - 10, 88, 125, - 112, 58,
83, 95, 6, 10, 98, - 34, 80, 15, - 91, 86,
- 19, 52, - 17, 117, 49, - 63, 118, - 90, 36, - 116,
- 40, - 71, 97, - 53, - 109, - 85, 109, - 16, - 3, 104,
- 95, 68, 54, 34, 26, 114, - 1, 106, - 121, 3,
66, 0, 100, - 84, 57, 107, 119, - 42, 112, - 61,
1, 48, 38, 12, - 56, - 57, 39, - 106, - 72, 41,
7, 71, - 29, - 59, - 8, - 38, 79, - 31, 124, - 124,
8, 91, 116, 99, - 4, 9, - 36, - 78, 63, - 49,
- 67, - 87, 59, 101, - 32, 92, 94, 53, - 41, 115,
- 66, - 70, - 122, 50, - 50, - 22, - 20, - 18, - 21, 23,
- 2, - 48, 96, 65, - 105, 123, - 14, - 110, 69, - 24,
- 120, - 75, 74, 127, - 60, 113, 90, - 114, 105, 46,
27, - 125, - 23, - 44, 64

11.2 .NET

11.2.1 System.Random (Random.cs)

The following is the code of the System.Random class as generated by the Reflector.

// ==++==
//
//
// Copyright (c) 2006 Microsoft C orporation. All rights reserved.
//
// The use and distribution terms for this software are contained in
the file
// named license.txt, which can be found in the root of this
distribution.
// By using this software in any fashion, you are agre eing to be bound
by the
// terms of this license.
//
// You must not remove this notice, or any other, from this software.
//
//
// == -- ==
/*==
**
** Class: Random
**
**
** Purpose: A random number generator.
**
**

78

===*/
namespace System {

 using System;
 using System.Runtime.CompilerServices;
 using System.Globalization;
[System.Runtime.InteropServices.ComVisible(tr ue)]
 [Serializable()] public class Random {
 //
 // Private Constants
 //
 private const int MBIG = Int32.MaxValue;
 private const int MSEED = 161803398;
 private const int MZ = 0;

 //
 // Member Variables
 //
 private int inext, inextp;
 private int[] SeedArray = new int[56];

 //
 // Public Constants
 //

 //
 // Native Declarations
 //

 //
 // Constructors
 //

 public Random()
 : this(Environment.TickCount) {
 }

 public Random(int Seed) {
 int ii;
 int mj, mk;

 //Initialize our Seed array.
 //This algorithm comes from Numerical Recipes in C (2n d Ed.)
 mj = MSEED - Math.Abs(Seed);
 SeedArray[55]=mj;
 mk=1;
 for (int i=1; i<55; i++) { //Apparently the range [1..55] is
special (Knuth) and so we're wasting the 0'th position.
 ii = (21*i)%55;
 SeedArray[ii]=mk;
 mk = mj - mk;
 if (mk<0) mk+=MBIG;
 mj=SeedArray[ii];
 }
 for (int k=1; k<5; k++) {
 for (int i=1; i<56; i++) {
 SeedArray[i] - = SeedArray[1+(i+30)%55];
 if (SeedA rray[i]<0) SeedArray[i]+=MBIG;
 }
 }
 inext=0;
 inextp = 21;
 Seed = 1;
 }

 //
 // Package Private Methods
 //

79

/*====================================Sample============================ ==
======
 **Action: Return a new random number [0..1) and reSeed the Seed
array.
 **Returns: A double [0..1)
 **Arguments: None
 **Exceptions: None

==
====*/
 protected virtual double Sample() {
 //Including this division at the end gives us significantly
improved
 //random number distribution.
 return (InternalSample()*(1.0/MBIG));
 }

 private int InternalSample() {
 int retVal;
 int locINext = inext;
 int locINextp = inextp;

 if (++locINext >=56) locINext=1;
 if (++locINextp>= 56) locINextp = 1;

 retVal = SeedArray[locINext] - SeedArray[locINextp];

 if (retVal<0) retVal+=MBIG;

 SeedArray[locINext]=retVal;

 inext = locINext;
 inextp = locINextp;

 return retVal;
 }

 //
 // Public Instance Methods
 //

/*=====================================Next===============================
======
 **Returns: An int [0..Int32.MaxValue)
 **Arguments: None
 **Exceptions: None.

==
====*/
 public virtual int Next() {
 return InternalSample();
 }

 private double GetSampleForLargeRange() {
 // The distribution of double v alue returned by Sample
 // is not distributed well enough for a large range.
 // If we use Sample for a range [Int32.MinValue..Int32.MaxValue)
 // We will end up getting even numbers only.

 int result = InternalSample ();
 // Note we can't use addition here. The distribution will be bad
if we do that.
 bool negative = (InternalSample()%2 == 0) ? true : false; //
decide the sign based on second sample
 if(negative) {

80

 result = - r esult;
 }
 double d = result;
 d += (Int32.MaxValue - 1); // get a number in range [0 .. 2 *
Int32MaxValue - 1)
 d /= 2*(uint)Int32.MaxValue - 1 ;
 return d;
 }

/*=====================================Next===============================
======
 **Returns: An int [minvalue..maxvalue)
 **Arguments: minValue -- the least legal value for the Random
number.
 ** maxValue -- One greater than the greatest legal return
value.
 **Exceptions: None.

==
====*/
 public virtual int Next(int minValue, int maxValue) {
 if (minValue>maxValue) {
 t hrow new
ArgumentOutOfRangeException("minValue",String.Format(CultureInfo.CurrentCu
lture, Environment.GetResourceString("Argument_MinMaxValue"), "minValue",
"maxValue"));
 }

 long range = (long)maxValue - minValue;
 if(range <= (long)Int32.MaxValue) {
 return ((int)(Sample() * range) + minValue);
 }
 else {
 return (int)((long)(GetSampleForLargeRange() * range) +
minValue);
 }
 }

/*=== ==================================Next===============================
======
 **Returns: An int [0..maxValue)
 **Arguments: maxValue -- One more than the greatest legal return
value.
 **Exceptions: None.

================================ ==
====*/
 public virtual int Next(int maxValue) {
 if (maxValue<0) {
 throw new ArgumentOutOfRangeException("maxValue",
String.Format(CultureInfo.CurrentCulture,
Environment.GetResourceString("ArgumentOutOfRange_MustBePositive"),
"maxValue"));
 }
 return (int)(Sample()*maxValue);
 }

/*=====================================Next===============================
======
 **Returns: A double [0..1)
 **Arguments: None
 **Exceptions: None

81

==
====*/
 public virtual double NextDouble() {
 return Sample();
 }

/*==================================NextBytes=============================
======
 **Action: Fills the byte array with random bytes [0..0x7f]. The
entire array is filled.
 **Returns:Void
 **Arugments: buffer -- the array to be filled.
 **Exceptions: None

==
====*/
 public virtual void NextBytes(byte [] buffer) {
 if (buffer==null) throw new ArgumentNullException("buffer");
 for (int i=0; i<buffer.Length; i++) {
 buffer[i]=(byte)(InternalSample()%(Byte.MaxValue+1));
 }
 }
 }

}

11.2.2 System.Security.Cryptography. RNGCryptoServiceProvider (rngcryptos-
erviceprovider.cs)

// ==++==
//
//
// Copyright (c) 2006 Microsoft Corporation. All rights reserved.
//
// The use and distribution terms for this software are contained in
the file
// named license.txt, which can be found in the root of this
distribution.
// By using this software in any fashion, you are agreeing to be bound
by the
// terms of this license.
//
// You must not remove this notice, or any other, from this software.
//
//
// ==-- ==

//
// RNGCryptoServiceProvider.cs
//

namespace System.Security.Cryptography {
 using Microsoft.Win32;
 using System.Runtime.InteropServices;

[System.Runtime.InteropServices.ComVisible(true)]
 public sealed class RNGCryptoServiceProvider : RandomNumberGenerator {

 //
 // public constructors
 //

 public RNGCryptoServiceProvider() { }

82

 //
 // public methods
 //

 public override void GetBytes(byte[] data) {
 if (data == null) throw new ArgumentNullException("data");
 if (!Win32Native.Random(true, data, data.Length))
 throw new
CryptographicException(Marshal.GetLastWin32Error());
 }

 public override void GetNonZeroBytes(byte[] data) {
 if (data == null)
 throw new ArgumentNullException("data");

 GetBytes(data);

 int indexOfFirst0Byte = data.Length;
 for (int i = 0; i < data.Le ngth; i++) {
 if (data[i] == 0) {
 indexOfFirst0Byte = i;
 break;
 }
 }
 for (int i = indexOfFirst0Byte; i < data.Length; i++) {
 if (data[i] != 0) {
 data[indexOfFirst0Byte++] = data[i];
 }
 }

 while (indexOfFirst0Byte < data.Length) {
 // this should be more than enough to fill the rest in one
iteration
 byte[] tmp = new byte[2 * (data.Length -
indexOfFirst0Byte)];
 GetBytes(tmp);

 for (int i = 0; i < tmp.Length; i++) {
 if (tmp[i] != 0) {
 data[indexOfFirst0Byte++] = tmp[i];
 if (indexOfFirst0Byte >= data.Length) break;
 }
 }
 }
 }
 }
}

11.2.2.1 Microsoft.Win32 (win32natives.cs)

Here are only the applicable parts of the code, not the entire class code:

[DllImport(KERNEL32, EntryPoint="PAL_Random")]
 [ResourceExposure(ResourceScope.None)]
 internal extern static bool Random(bool bStrong,
 [Out, MarshalAs(UnmanagedType.LPArray)] byte[]
buffer, int length);

11.2.3 win32pal.c

Here are only the applicable parts of the code, not the entire code:

PALIMPORT
BOOL
PALAPI
PAL_Random(
 IN BOOL bStrong,

83

 IN OUT LPVOID lpBuffer,
 IN DWORD dwLength)
{
 BOOL Ret;
 HCRYPTPROV hProv;

 PERF_ENTRY(PAL_Random);
 LOGAPI("PAL_Rand om(bStrong=%d, lpBuffer=%p, dwLength=0x%x) \ n",
bStrong, lpBuffer, dwLength);

 if (hCryptProv == NULL)
 {
 Ret = CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA_FULL,
CRYPT_VERIFYCONTEXT);

 if (!Ret)
 goto LExit;

 if (InterlockedCompareExchangePointer((PVOID*)&hCryptProv,
(PVOID)hProv, NULL) != NULL)
 {
 // somebody beat us to it
 CryptReleaseContext(hProv, 0);
 }
 }

 Ret = CryptGenRandom(hCryptProv, dwLength, lpBuf fer);

LExit:
 LOGAPI("PAL_Random returns BOOL %d \ n", Ret);
 PERF_EXIT(PAL_Random);
 return Ret;
}

11.3 *NIX C

11.3.1 BSD

Configuration of PRNG variants: The TYPE_0 is a special type – it falls back to using LCG as
the PRNG. Each type uses a different polynomial (actually trinomial). The following is de-
fined per type: (1) BREAK_i (where i = 1..5) - the minimum amount of state information (in
bytes), from which this type (trinomial) is used, (2) DEG_i - the degree of the trinomial
used (3) SEP_i – the separation between the two lower order of coefficients of the trinomi-
al, meaning the separation between fptr and rptr. The types are defined as bellow:

/* Linear congruential. */
#define TYPE_0 0
#define BREAK_0 8
#define DEG_0 0
#define SEP_0 0

/* x**7 + x* *3 + 1. */
#define TYPE_1 1
#define BREAK_1 32
#define DEG_1 7
#define SEP_1 3

/* x**15 + x + 1. */
#define TYPE_2 2
#define BREAK_2 64
#define DEG_2 15
#define SEP_2 1

/* x**31 + x**3 + 1. */
#define TYPE_3 3
#define BREAK_3 128

84

#define DEG_3 31
#define SEP_3 3

/* x**63 + x + 1. */
#define TYPE_4 4
#define BREAK_4 256
#define DEG_4 63
#define SEP_4 1

LCG code for TYPE_0 in the BSD variant:

int32_t val = state[0];
val = ((state[0] * 1103515245) + 12345) & 0x7fffffff;

Generator code of the AFG generators; below is the code snippet of this algorithm: (line
383-405, random_r.c)

int32_t *fptr = buf - >fptr;
int32_t *rptr = buf - >rptr;
int32_t *end_ptr = buf - >end_ptr;
int32_t val;

val = *fptr += *rptr;
/* Chucking least random bit. */
*result = (val >> 1) & 0x7fffffff;
++fptr;
if (fptr >= end_ptr)
{
 fptr = state;
 ++rptr;
}
else
{
 ++rptr;
 if (rptr >= end_ptr)
 rptr = state;
}
buf - >fptr = fptr;
buf - >rptr = rptr;

The LCG that is used in the seed initialization process is in the following snippet (line
192-201, random_r.c):

/* This does:
 state[i] = (16807 * state[i - 1]) % 2147483647;
 but avoids overflowing 31 bits. */
long int hi = word / 127773;
long int lo = word % 127773;
word = 16807 * lo - 2836 * hi;
if (word < 0)
word += 2147483647;

11.3.2 SVID

drand structure:

struct drand48_data
 {
 unsigned short int __x[3]; /* Current state. */
 unsigned short int __old_x[3]; /* Old state. */
 unsigned short int __c; /* Additive const. in congruential formula.
*/
 unsigned short int __init; /* Flag for initializing. */
 unsigned long long int __a; /* Factor in congruential formula. */
 };

85

The LCG implementation can be seen in the function __drand48_iterate; the code fol-
lows:

int
__drand48_iterate (xsubi, b uffer)
 unsigned short int xsubi[3];
 struct drand48_data *buffer;
{
 uint64_t X;
 uint64_t result;

 /* Initialize buffer, if not yet done. */
 if (__builtin_expect (!buffer - >__init, 0))
 {
 buffer - >__a = 0x5deece66dull;
 buffer - >__c = 0xb;
 buffer - >__init = 1;
 }

 /* Do the real work. We choose a data type which contains at least
 48 bits. Because we compute the modulus it does not care how
 many bits really are computed. */

 X = (uint64_t) xsubi[2] << 32 | (uint32_t) xsubi[1] << 16 | xsubi[0];

 result = X * buffer - >__a + buffer - >__c;

 xsubi[0] = result & 0xffff;
 xsubi[1] = (result >> 16) & 0xffff;
 xsubi[2] = (result >> 32) & 0xffff;

 return 0;
}

86

12 Appendix C: Configuration Files

12.1 java.security default security file configuration

Below we can see the default configuration (as taken from a Windows JDK installation) that
is shipped with the java JRE and JDK. The applicable keys are highlighted in red; these keys
are used for the PRNG generation algorithms.

This is the "master security properties file".

In this file, various security properties are set for use by
java.security classes. This is where users can statically register
Cryptography Package Providers ("providers" for short). The term
"provider" refers to a package or set of packages that supply a
concrete implementation of a subset of the cryptography aspects of
the Java Security API. A provider may, for example, implement one or
more digital signature algo rithms or message digest algorithms.

Each provider must implement a subclass of the Provider class.
To register a provider in this master security properties file,
specify the Provider subclass name and priority in the format

security.provid er.<n>=<className>

This declares a provider, and specifies its preference
order n. The preference order is the order in which providers are
searched for requested algorithms (when no specific provider is
requested). The order is 1 - based; 1 is the most preferred, followed
by 2, and so on.

<className> must specify the subclass of the Provider class whose
constructor sets the values of various properties that are required
for the Java Security API to look up the algorithms or other
facili ties implemented by the provider.

There must be at least one provider specification in java.security.
There is a default provider that comes standard with the JDK. It
is called the "SUN" provider, and its Provider subclass
named Sun appears in th e sun.security.provider package. Thus, the
"SUN" provider is registered via the following:

security.provider.1=sun.security.provider.Sun

(The number 1 is used for the default provider.)

Note: Providers can be dynamically registered instead by calls to
either the addProvider or insertProviderAt method in the Security
class.

List of providers and their preference orders (see above):

security.provider.1=sun.security.provider.Sun
security.provider.2=sun.security.rsa.SunRsaSign
securi ty.provider.3=com.sun.net.ssl.internal.ssl.Provider
security.provider.4=com.sun.crypto.provider.SunJCE
security.provider.5=sun.security.jgss.SunProvider
security.provider.6=com.sun.security.sasl.Provider
security.provider.7=org.jcp.xml.dsig.internal.dom.XM LDSigRI
security.provider.8=sun.security.smartcardio.SunPCSC
security.provider.9=sun.security.mscapi.SunMSCAPI

Select the source of seed data for SecureRandom. By default an
attempt is made to use the entropy gathering device specified by
the sec urerandom.source property. If an exception occurs when
accessing the URL then the traditional system/thread activity

87

algorithm is used.

On Solaris and Linux systems, if file:/dev/urandom is specified and it
exists, a special SecureRandom implementation is activated by default.
This "NativePRNG" reads random bytes directly from /dev/urandom.

On Windows systems, the URLs file:/dev/random and file:/dev/urandom
enables use of the Microsoft CryptoAPI seed functionality.

securerandom.s ource=file:/dev/urandom

The entropy gathering device is described as a URL and can also
be specified with the system property "java.security.egd". For example,
- Djava.security.egd=file:/dev/urandom
Specifying this system property will override the securerandom.source
setting.

Class to instantiate as the javax.security.auth.login.Configuration
provider.

login.configuration.provider=com.sun.security.auth.login.ConfigFile

Default login configuration file

#login.config.url.1=file: ${user.home}/.java.login.config

Class to instantiate as the system Policy. This is the name of the class
that will be used as the Policy object.

policy.provider=sun.security.provider.PolicyFile

The default is to have a single system - wide policy file,
and a policy file in the user's home directory.
policy.url.1=file:${java.home}/lib/security/java.policy
policy.url.2=file:${user.home}/.java.policy

whether or not we expand properties in the policy file
if this is set to false, properties (${ ...}) will not be expanded in
policy
files.
policy.expandProperties=true

whether or not we allow an extra policy to be passed on the command line
with - Djava.security.policy=somefile. Comment out this line to disable
this feature.
policy.allowSyst emProperty=true

whether or not we look into the IdentityScope for trusted Identities
when encountering a 1.1 signed JAR file. If the identity is found
and is trusted, we grant it AllPermission.
policy.ignoreIdentityScope=false

Default keystore type.

keystore.type=jks

Class to instantiate as the system scope:

system.scope=sun.security.provider.IdentityDatabase

List of comma - separated packages that start with or equal this string
will cause a security exception to be thrown when
passed to checkPackageAccess unless the

88

corresponding RuntimePermission ("accessClassInPackage."+package) has
been granted.
package.access=sun.,com.sun.xml.internal.ws.,com.sun.xml.internal.bind.,co
m.sun.imageio.

List of comma - separated packages t hat start with or equal this string
will cause a security exception to be thrown when
passed to checkPackageDefinition unless the
corresponding RuntimePermission ("defineClassInPackage."+package) has
been granted.

by default, no packages are re stricted for definition, and none of
the class loaders supplied with the JDK call checkPackageDefinition.

#package.definition=

Determines whether this properties file can be appended to
or overridden on the command line via - Djava.security.prope rties

security.overridePropertiesFile=true

Determines the default key and trust manager factory algorithms for
the javax.net.ssl package.

ssl.KeyManagerFactory.algorithm=SunX509
ssl.TrustManagerFactory.algorithm=PKIX

The Java - level namelookup cache policy for successful lookups:

any negative value: caching forever
any positive value: the number of seconds to cache an address for
zero: do not cache

default value is forever (FOREVER). For security reasons, this
caching is made forever when a security manager is set. When a security
manager is not set, the default behavior is to cache for 30 seconds.

NOTE: setting this to anything other than the default value can have
serious security implications. Do not set it unless
you are sure you are not exposed to DNS spoofing attack.

#networkaddress.cache.ttl= - 1

The Java - level namelookup cache policy for failed lookups:

any negative value: cache forever
any positive value: the number of seconds to c ache negative lookup
results
zero: do not cache

In some Microsoft Windows networking environments that employ
the WINS name service in addition to DNS, name service lookups
that fail may take a noticeably long time to return (approx. 5 seconds).
For this reason the default caching policy is to maintain these
results for 10 seconds.

networkaddress.cache.negative.ttl=10

Properties to configure OCSP for certificate revocation checking

Enable OCSP

89

By default, OCSP is not used f or certificate revocation checking.
This property enables the use of OCSP when set to the value "true".

NOTE: SocketPermission is required to connect to an OCSP responder.

Example,
ocsp.enable=true

Location of the OCSP responder

By default, the location of the OCSP responder is determined implicitly
from the certificate being validated. This property explicitly specifies
the location of the OCSP responder. The property is used when the
Authority Information Access extension (defined in RFC 3280) is absent
from the certificate or when it requires overriding.

Example,
ocsp.responderURL=http://ocsp.example.net:80

Subject name of the OCSP responder's certificate

By default, the certificate of the OCSP responde r is that of the issuer
of the certificate being validated. This property identifies the
certificate
of the OCSP responder when the default does not apply. Its value is a
string
distinguished name (defined in RFC 2253) which identifies a certificate
in
the set of certificates supplied during cert path validation. In cases
where
the subject name alone is not sufficient to uniquely identify the
certificate
then both the "ocsp.responderCertIssuerName" and
"ocsp.responderCertSerialNumber" prope rties must be used instead. When
this
property is set then those two properties are ignored.

Example,
ocsp.responderCertSubjectName="CN=OCSP Responder, O=XYZ Corp"

Issuer name of the OCSP responder's certificate

By default, the certifica te of the OCSP responder is that of the issuer
of the certificate being validated. This property identifies the
certificate
of the OCSP responder when the default does not apply. Its value is a
string
distinguished name (defined in RFC 2253) which identifies a certificate
in
the set of certificates supplied during cert path validation. When this
property is set then the "ocsp.responderCertSerialNumber" property must
also
be set. When the "ocsp.responderCertSubjectName" property is set then
t his
property is ignored.

Example,
ocsp.responderCertIssuerName="CN=Enterprise CA, O=XYZ Corp"

Serial number of the OCSP responder's certificate

By default, the certificate of the OCSP responder is that of the issuer
of the certificat e being validated. This property identifies the
certificate

90

of the OCSP responder when the default does not apply. Its value is a
string
of hexadecimal digits (colon or space separators may be present) which
identifies a certificate in the set of cer tificates supplied during cert
path
validation. When this property is set then the
"ocsp.responderCertIssuerName"
property must also be set. When the "ocsp.responderCertSubjectName"
property
is set then this property is ignored.

Example,
ocsp .responderCertSerialNumber=2A:FF:00

91

13 Bibliography

 [1] Donald E Knuth, Seminumerical Algorithms, 2nd ed.: Addison-Wesley, 1997, vol. 2,
The Art of Computer Programming Series.

[2] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery,
Numerical Recipes in C (The Art of Scientific Computing), 2nd ed.: CAMBRIDGE
UNIVERSITY PRESS, 1992.

[3] TIOBE Software. (2010, August) TOIBE Software. [Online].
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

[4] Hex-Rays. The IDA Pro Disassembler and Debugger. [Online]. http://www.hex-
rays.com/idapro/

[5] Boaz Barak and Shai Halevi, "An architecture for robust pseudo-random
generation," , 2005, http://www.cs.princeton.edu/~boaz/Papers/devrand.pdf.

[6] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall, "Cryptanalytic Attacks
on Pseudorandom Number Generators," Lecture Notes in Computer Science, vol.
1372, pp. 168-188, 1998.

[7] M. Gude, "Concept for a High-Performance Random Number Generator Based on
Physical Random Noise," vol. 39, pp. 187-190, 1985.

[8] G. B Agnew, "Random Source for Cryptographic Systems," in Advances in
Cryptology - EUROCRYPT '87 Proceedings, 1988, pp. 77-81.

[9] M. Richterm, Ein Rauschgenerator zur Gweinnung won quasi-idealen Zufallszahlen
fur die stochastische Simulation.: Aachen University of Technology, 1992, In German.

[10] R.C. Fairchild, R.L. Mortenson, and K.B. Koulthart, "An LSI Random Number
Generator (RNG)," in Advances in Cryptology: Proceedings, 1985, pp. 203-230.

[11] Jon Postel, "Transmission control protocol," Internet Engineering Task force, vol.
RFC 793, September 1981.

[12] INTERNATIONAL TELECOMMUNICATION UNION (X.667), "Generation and
registration of Universally Unique Identifiers (UUIDs) and their use as ASN.1 object
identifier components," X.667, 2004.

[13] Tim Dierks and Christopher Allen, "The TLS protocol version 1.0," RFC 2246, 1999.

[14] R.L. Rivest, A. Shamir, and L. Adleman, "A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems," Communications of the ACM, vol. 21 (2), pp. 120–126,
1978.

[15] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied
Cryptography.: CRC Press, 1996.

[16] Shamir A., "On the generation of cryptographically strong pseudo-random
sequences," , 1981, pp. 544-550.

[17] Lenore Blum, Manuel Blum, and Michael Shub, "Comparison of two pseudo-
random numbergenerators," , New York, 1983, pp. 61-78.

[18] Michael Howard and David LeBlanc, Writing Secure Code, Second Edition.:
Microsoft Publishing, 2002.

[19] D. H. Lehmer, "Mathematical methods in large-scale computing units," in 2nd
Sympos. on Large-Scale Digital Calculating Machinery, Cambridge, MA, 1949, pp. 141-
146.

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.hex-rays.com/idapro/
http://www.hex-rays.com/idapro/

92

[20] L’ecuyer Pierre, "Efficient and Portable Combined Random Number Generators,"
Communications of the ACM, vol. 31 Number 6, no. June 1988, 1988.

[21] Bruce Schneier, Applied Cryptography, Second Edition: Protocols, Algorthms, and
Source Code in C.: John Wiley & Sons, Inc., 1996.

[22] Marsaglia George, "A Current View of Random Number Generators," , Atlanta,
1984.

[23] Richard P. Brent, "Uniform Random Number Generators for Supercomputers," ,
Melbourne, 1992.

[24] Lewis T. G. and Payne W. H., "Generalized Feedback Shift Register Pseudorandom
Number Algorithm," vol. 20, pp. 456-468, 1973.

[25] Matsumoto M. and Kurita Y., "Twisted GFSR generators," ACM Transactions on
Modeling and Computer Simulation, vol. 2, pp. 179-194, 1992.

[26] M. Matsumoto and Y. Kurita, "Twisted GFSR generators II," ACM Transactions on
Modeling and Computer Simulation, vol. 4, pp. 254-266, 1994.

[27] M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-Dimensionally
Equidistributed Uniform Pseudo-Random Number Generator," ACM Trans-actions on
Modeling and Computer Simulation (TOMACS), vol. 8, pp. 3-30, 1998.

[28] National Institute of Standards and Technology, "NIST 800-90: Recommendation
for Random Number Generation Using Deterministic Random Bit Generators
(Revised)," NIST, NIST NIST 800-90, 2007.

[29] FIPS, "DIGITAL SIGNATURE STANDARD (DSS)," FIPS PUB 186-2, 2000.

[30] National Institute of Standards and Technology, "FIPS PUB 197: Advanced
Encryption Standard (AES)," FIPS PUB 197, 2001.

[31] Dan Shumow and Ferguson Niels. On the Possibility of a Back Door in the NIST
SP800-90 Dual Ec Prng. [Online]. http://rump2007.cr.yp.to/15-shumow.pdf

[32] National Institute of Standards and Technology, "FIPS PUB 180-1: Secure hash
standard," FIPS PUB 180-1, 1995.

[33] National Bureau of Standards, "FIPS-Pub.46: Data Encryption Standard,"
Washington D.Cc, FIPS-Pub.46, 1977.

[34] Mihir Bellare, Shafi Goldwasser, and Daniele Micciancio, ""Pseudo-Random"
Number Generation within Cryptographic Algorithms: the DSS Case," in Advances in
Cryptology - Crypto 97 Proceedings, 1997.

[35] Peter Gutmann, "Software Generation of Practically Strong Random Numbers," in
In Proc. of 7th USENIX Security Symposium, 1998, An updated version appears in
http://www.cypherpunks.to/~peter/06_random.pdf.

[36] Ernesto Guisado. Cryptographic Random Numbers. [Online].
http://erngui.com/rng/index.html

[37] GEORGE MARSAGLIA, "RANDOM NUMBERS FALL MAINLY IN THE PLANES," 1968.

[38] George A Fishman and Louis R III Moore, "An exhaustive analysis of multiplicative
congruential random number generators with modulus 2^31-1," SIAM Journal on
Scientific and Statistical Computing, vol. 7, no. 1, pp. 24-45, 1986.

[39] Ian Goldberg and David Wagner, "Randomness and the Netscape Browser," Dr.
Dobb's Journal, 1996.

http://rump2007.cr.yp.to/15-shumow.pdf
http://erngui.com/rng/index.html

93

[40] Jennifer G. Steiner, Clifford Neuman, and Jeffrey I. Schiller, "Kerberos: an
authentication service for open network systems," in Proc. winter Usenix conference,
Dallas, 1988.

[41] Nelson Minar, "Breakable session keys in Kerberos v4," message-ID
199602200828.BAA21074@nelson.santafe.edu, 1996.

[42] Zvi Gutterman and Dahlia Malkhi, "Hold Your Sessions: An Attack on Java Session-
Id Generation," , 2005.

[43] Apache Software Foundation (ASF). Tomcat Server.

[44] M. E. Hellman, "A cryptanalytic time-memory trade off," IEEE Trans. Inform.
Theory, pp. 401-406, 1980.

[45] Wietse Venema, "Murphy’s law and computer security," in Proceedings of the 6th
Usenix Security Symposium, 1996, p. 187.

[46] Brad Arkin et al. (1999, September) How we Learned to Cheat in Online Poker: A
Study in Software Security. [Online].
http://www.cigital.com/papers/download/developer_gambling.pdf

[47] ISO/SEC, "Pascal," ISO 7185 :1990, 1991.

[48] Top 500 Supercomputer Sites. (2010, June) Top 500 Supercomputer Sites.
[Online]. http://top500.org/stats/list/35/osfam

[49] Zvi Gutterman, Benny Pinkas, and Tzachy Reinman, "Analysis of the Linux Random
Number Generator," , 2006.

[50] Ted Ts'o. random.c. [Online]. http://www.kernel.org

[51] Open WRT Platform. [Online]. http://www.openwrt.org

[52] (2010) Operating Systems Market Share. [Online].
http://marketshare.hitslink.com/operating-system-market-share.aspx?qprid=10

[53] Leo Dorrendorf, Zvi Gutterman, and Benny Pinkas, "Cryptanalysis of the Windows
Random Number Generator," 2007.

[54] Gregg Keizer. (2007, November) Microsoft confirms that XP contains random
number generator bug. [Online].
http://www.computerworld.com/s/article/9048438/Microsoft_confirms_that_XP_co
ntains_random_number_generator_bug

[55] Microsoft. Microsoft Windows Homepage. [Online].
http://www.microsoft.com/windows/

[56] Linux. Linux. [Online]. http://www.linux.org/

[57] Microsoft. Microsoft's CLR Overview. [Online]. http://msdn.microsoft.com/en-
us/library/ddk909ch.aspx

[58] GNU. GNU C Library. [Online]. http://www.gnu.org/software/libc/

[59] GNU. BSD Random Number Functions. [Online].
http://www .gnu.org/software/libc/manual/html_node/BSD-Random.html

[60] GNU. SVID Random Number Function. [Online].
http://www.gnu.org/s/libc/manual/html_node/SVID-Random.html

[61] Microsoft. rand_s API. [Online]. http://msdn.microsoft.com/en-
us/library/sxtz2fa8(VS.80).aspx

http://www.cigital.com/papers/download/developer_gambling.pdf
http://top500.org/stats/list/35/osfam
http://www.kernel.org/
http://www.openwrt.org/
http://marketshare.hitslink.com/operating-system-market-share.aspx?qprid=10
http://www.computerworld.com/s/article/9048438/Microsoft_confirms_that_XP_contains_random_number_generator_bug
http://www.computerworld.com/s/article/9048438/Microsoft_confirms_that_XP_contains_random_number_generator_bug
http://www.microsoft.com/windows/
http://www.linux.org/
http://msdn.microsoft.com/en-us/library/ddk909ch.aspx
http://msdn.microsoft.com/en-us/library/ddk909ch.aspx
http://www.gnu.org/software/libc/
http://www.gnu.org/software/libc/manual/html_node/BSD-Random.html
http://www.gnu.org/s/libc/manual/html_node/SVID-Random.html
http://msdn.microsoft.com/en-us/library/sxtz2fa8(VS.80).aspx
http://msdn.microsoft.com/en-us/library/sxtz2fa8(VS.80).aspx

94

[62] Ilpo Vattulainen, T. Ala-Nissila, and K. Kankaala, "Physical Tests for Random
Numbers in Simulations," 1994.

[63] Wikipedia. C POSIX Library. [Online]. http://en.wikipedia.org/wiki/C_POSIX_library

[64] Microsoft. Microsoft C Run-Time Libraries. [Online].
http://msdn.microsoft.com/en-us/library/abx4dbyh(VS.80).aspx

[65] ISO/IEC. Open Standards. [Online]. http://www.open-
std.org/jtc1/sc22/wg14/www/standards.html#9899

[66] Wikipedia. ANSI C. [Online]. http://en.wikipedia.org/wiki/ANSI_C

[67] ANSI. ANSI C Rationale Document. [Online].
http://www.lysator.liu.se/c/rat/d10.html#4-10-2

[68] Joan B. Plumstead, "Inferring a Sequence Produced by a Linear Congruence," ,
1982.

[69] Microsoft. Security Enhancements in the CRT. [Online].
http://msdn.microsoft.com/en-us/library/8ef0s5kh(v=VS.80).aspx

[70] Wikipedia. CryptGenRandom Using RtlGenRandom. [Online].
http://en.wikipedia.org/wiki/CryptGenRandom#Using_RtlGenRandom

[71] Microsoft. Security-Enhanced Versions of CRT Functions. [Online].
http://msdn.microsoft.com/en-us/library/wd3wzwts(v=VS.80).aspx

[72] Wikipedia. iOS. [Online]. http://en.wikipedia.org/wiki/IPhone_OS

[73] GNU. GLIBC Pseudo-Random Numbers API. [Online].
http://www.gnu.org/s/libc/manual/html_node/Pseudo_002dRandom-
Numbers.html#Pseudo_002dRandom-Numbers

[74] Klein Amit. (2008, February) PowerDNS Recursor DNS Cache Poisoning. [Online].
http://www.trusteer.com/list-context/publications/powerdns-recursor-dns-cache-
poisoning

[75] Wikipedia. System V Interface Definition. [Online].
http://en.wikipedia.org/wiki/System_V_Interface_Definition

[76] Sun (now Oracle). Oracle and Java Technologies. [Online].
http://www.oracle.com/us/technologies/java/index.html

[77] Jan P. Monsch. Iplosion. [Online].
http://www.iplosion.com/papers/ruining_security_with_java.util.random_v1.0.pdf

[78] FIPS, Security Requirements for Cryptographic Modules, FIPS 140-2, 2001,
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf.

[79] D. Eastlake 3rd and S. D. Crocker and J. Schiller, "Randomness Recommendations
for Security," RFC 1750, 1994.

[80] Sun. Java Cryptography Architecture. [Online].
http://download.oracle.com/javase/1.4.2/docs/guide/security/CryptoSpec.html

[81] Microsoft. Cryptographic Service Providers. [Online].
http://msdn.microsoft.com/en-us/library/aa380245(VS.85).aspx

[82] Tzachy Reinman and Malkhi Dahlia. (2005) On Linux Random Number Generator
Thesis Dissertation. [Online]. www.cs.huji.ac.il/~reinman/thesis.pdf

[83] RSA Laboratories, "PKCS #11: Cryptographic Token Interface Standard,".

http://en.wikipedia.org/wiki/C_POSIX_library
http://msdn.microsoft.com/en-us/library/abx4dbyh(VS.80).aspx
http://www.open-std.org/jtc1/sc22/wg14/www/standards.html#9899
http://www.open-std.org/jtc1/sc22/wg14/www/standards.html#9899
http://en.wikipedia.org/wiki/ANSI_C
http://www.lysator.liu.se/c/rat/d10.html#4-10-2
http://msdn.microsoft.com/en-us/library/8ef0s5kh(v=VS.80).aspx
http://en.wikipedia.org/wiki/CryptGenRandom#Using_RtlGenRandom
http://msdn.microsoft.com/en-us/library/wd3wzwts(v=VS.80).aspx
http://en.wikipedia.org/wiki/IPhone_OS
http://www.gnu.org/s/libc/manual/html_node/Pseudo_002dRandom-Numbers.html#Pseudo_002dRandom-Numbers
http://www.gnu.org/s/libc/manual/html_node/Pseudo_002dRandom-Numbers.html#Pseudo_002dRandom-Numbers
http://www.trusteer.com/list-context/publications/powerdns-recursor-dns-cache-poisoning
http://www.trusteer.com/list-context/publications/powerdns-recursor-dns-cache-poisoning
http://en.wikipedia.org/wiki/System_V_Interface_Definition
http://www.oracle.com/us/technologies/java/index.html
http://www.iplosion.com/papers/ruining_security_with_java.util.random_v1.0.pdf
http://download.oracle.com/javase/1.4.2/docs/guide/security/CryptoSpec.html
http://msdn.microsoft.com/en-us/library/aa380245(VS.85).aspx
www.cs.huji.ac.il/~reinman/thesis.pdf

95

[84] Brian Warner. EGD: The Entropy Gathering Daemon. [Online].
http://egd.sourceforge.net/

[85] E. H. McKinney, "Generalized Birthday Problem," American Mathematical
Monthly, pp. 385-387, 1966.

[86] X. Wang, Y.L. Yin, and and H. Yu, "Finding Collisions in the Full SHA-1," , 2005.

[87] Microsoft, "Common Language Infrastructure (CLI)," ECMA Standard ECMA-335,.

[88] Microsoft. (2006, March) Shared Source Common Language Infrastructure 2.0
Release. [Online].
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=8c09fd61-3f26-
4555-ae17-3121b4f51d4d&displaylang=en

[89] redgate..NET Reflector - redgate products. [Online]. http:/ /www.red-
gate.com/products/reflector/

[90] Novell. mono. [Online]. http://www.mono-project.com/Main_Page

[91] Wikipedia. The Golden Ratio. [Online]. http://en.wikipedia.org/wiki/Golden_ratio

[92] David Wright. Random Numbers. [Online].
http://www.shadlen.org/ichbin/random/generators.htm#knuth

[93] Microsoft. (2007, September) MSDN (.NET Matters). [Online].
http://msdn.microsoft.com/en-us/magazine/cc163367.aspx

[94] Microsoft. Mapping Algorithm Names to Cryptography Classes. [Online].
http://msdn.microsoft.com/en-us/library/693aff9y(v=VS.90).aspx

[95] Michael Howard. (2005, January) Cryptographically Secure Random number on
Windows without using CryptoAPI. [Online].
http://blogs.msdn.com/b/michael_howard/archive/2005/01/14/353379.aspx

[96] Microsoft. (2010, July) CryptGenRandom Function API Documentation. [Online].
http://msdn.microsoft.com/en-us/library/aa379942(VS.85).aspx

[97] PHP. PHP. [Online]. http://www.php.net/

[98] Netcraft. PHP Usage. [Online]. http://www.php.net/usage.php

[99] Apache. Apache. [Online]. http://www.apache.org/

[100] PHP. PHP Writing Functions Documentation. [Online].
http://www.php.net/manual/en/internals2.funcs.php

[101] Ingo Molnar. (2020, September) lockless, scalable get_pid(). [Online].
http://lwn.net/Articles/10181/

[102] corbet. (2002, September) Solving the process ID allocation problem. [Online].
http://lwn.net/Articles/10238/

[103] corbet. (2002, September) The get_pid() function. [Online].
http://lwn.net/Articles/10246/

[104] Redhat. RedHat Linux. [Online]. http://www.redhat.com/

[105] Wikipedia. HTTP Secure. [Online]. http://en.wikipedia.org/wiki/HTTP_Secure

[106] Bruce Schneier. (2010, March) Side-Channel Attacks on Encrypted Web Traffic.
[Online]. http://www.schneier.com/blog/archives/2010/03/side-channel_at.html

[107] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang, "Side-Channel Leaks in
Web Applications: a Reality Today, a Challenge Tomorrow," , Oakland, 2010.

http://egd.sourceforge.net/
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=8c09fd61-3f26-4555-ae17-3121b4f51d4d&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=8c09fd61-3f26-4555-ae17-3121b4f51d4d&displaylang=en
http://www.red-gate.com/products/reflector/
http://www.red-gate.com/products/reflector/
http://www.mono-project.com/Main_Page
http://en.wikipedia.org/wiki/Golden_ratio
http://www.shadlen.org/ichbin/random/generators.htm#knuth
http://msdn.microsoft.com/en-us/magazine/cc163367.aspx
http://msdn.microsoft.com/en-us/library/693aff9y(v=VS.90).aspx
http://blogs.msdn.com/b/michael_howard/archive/2005/01/14/353379.aspx
http://msdn.microsoft.com/en-us/library/aa379942(VS.85).aspx
http://www.php.net/
http://www.php.net/usage.php
http://www.apache.org/
http://www.php.net/manual/en/internals2.funcs.php
http://lwn.net/Articles/10181/
http://lwn.net/Articles/10238/
http://lwn.net/Articles/10246/
http://www.redhat.com/
http://en.wikipedia.org/wiki/HTTP_Secure
http://www.schneier.com/blog/archives/2010/03/side-channel_at.html

96

[108] Firewall.cx. Firewall.cx, the site for Networking Professionals. [Online].
http://www.firewall.cx/dns-query-format.php

[109] J. Kohl and C. Neuman, "The Kerberos network authentication service (V5)," RFC
1510, 1993.

[110] B. Callaghan, B. Pawlowski, and P. Staubach, "NFS version 3 protocol
specification," RFC 1813, 1995.

http://www.firewall.cx/dns-query-format.php

97

˶˧˴˵˸
 ˢˮ˩ˣ˸ ˧˥˸˲ˬ ˸ˣ˟ˣ˶˵ ˫˧˸˰˪˫˧˷˶ˡˮ ˭ˢ ˭˸ˣ˞ ˫˧ˬˣ˷˧˧˟ˣ ˸ˣ˩˶˰ˬ˟ ˫˧˞˶˵˞ ˫˧˶˲˯ˬ ˟˪˷˪˫˧˥˸˲ˬ .

 ˫˧˲˪˵ ˟ˣ˟˶˰ ˫˸˧˶ˣˠ˪˞ ˷ˣˬ˧ˬ ˡ˰ˣ ˷ˡ˥ ˢ˥˦˟˞ ˪ˣ˵ˣ˦ˣ˶˲ ˷ˣˬ˧ˬ ˭ˣˠ˩ ˫˧ˬˣ˥˸ˬ ˫˧˰ˮ ˫˧ˬˣ˷˧˧ˢˣ ˸ˣ˩˶˰ˬˢ
 ˫ˠ ˣ˪˞ ˢˮ˩ˣ˸ ˸ˣ˧˶˲˯ ;˸ˣ˶˧˷˰ ˢˮ˩ˣ˸ ˸ˣ˧˶˲˯ ˫˰ ˸ˣ˰˧ˠˬ ˸ˣ˧ˮ˶ˡˣˬ ˢˮ˩ˣ˸ ˸ˣ˲˷ .˭ˣˣ˵ˬ ˶˵ˣ˲ ˵˥˷ˬ ˶ˣ˟˰

ˣˡˣ˞˯˲ ˫˧˶˲˯ˬ ˧˪˪ˣ˥ˬ ˪˷ ˫˧˷ˣˬ˧ˬˣ ˸ˣ˧˴˵ˮˣ˲ ˸ˣ˪˧˩ˬ-˴˵ˮˣ˲ .˫˧˧˞˶˵˞ ˥˸˲ˬˢ ˸ˡˣ˟˰ ˸˞ ˸ˣ˦˷˲ˬ ˣ˪˞ ˸ˣ˧
 .ˣˬ˴˰˟ ˫˧˪˪ˣ˥ˬˢ ˸˟˧˸˩˟ ˨˶ˣ˴ˢ ˞˪˪ ˫˧˧˞˶˵˞ ˣˡˣ˞˯˲ ˫˧˶˲˯ˬ ˪˪ˣ˥˪ ˣ˪ ˸ˣ˶˷˲˞ˬˣ ˫˧ˮˣ˷ˢ ˫˧˷ˣˬ˧ˬˢ

.˶ˣ˴˧˧ˢ ˫˸˧˶ˣˠ˪˞˟ ˭˩ˣ ˧˲˶ˠˣ˦˲˧˶˵ˢ ˵ˤˣ˥ˢ ˭ˣˠ˩ ,˸ˣˮˣ˷ ˸ˣˮˣ˩˸˟ ˫˧˪ˡ˟ˮ
ˣˡˣ˞˯˲ ˫˧˶˲˯ˬ ˧˪˪ˣ˥ˬ ˪˷ ˫˧˷ˣˬ˧ˬˢ ˸˞ ˫˧˶˵ˣ˥ ˣˮ˞ ˣˤ ˢˡˣ˟˰˟-˸ˣ˲˷˟ ˫˧˧˞˶˵˞ ˸ˣˮ˩˸

 ˧˲˶ˠˣ˦˲˧˶˵ˢ ˫˵ˤˣ˥ ,˫˧˷ˣˬ˧ˬ ˫˸ˣ˞˟ ˫˧ˬ˸˧˶ˣˠ˪˞ˢ ˪˷ ˫˪˷ˣ ˦˶ˣ˲ˬ ˥ˣ˸˧ˮ ˫˧˵˲˯ˬ ˣˮ˞ .˸ˣ˧˶˪ˣ˲ˣ˲
 .˫˧˪˪ˣ˥ˬ ˫˸ˣ˞ ˪˷ ˸ˣ˪ˣ˩˧ˢˣ ˫˧˪˪ˣ˥ˬˢ ˡ˥˞ ˷ˣˬ˧ˬ˟ ˠ˞˟ ˸ˣ˟˶˪ ,˪"ˮˢ ˫˧˪˪ˣ˥ˬ˟ ˸ˣ˟˶ ˸ˣ˷˪ˣ˥ ˫˧˞˶ˬ ˣˮ˞

 ˸ˣˮ˩˸ˢ ˸˲˷˟C# ˭˩ˣ ˟ ˭˷˯ˢ ˶ˣ˴˧˧ ˫˸˧˶ˣˠ˪˞ ˪˰ ˸˧˪˞˧ˣˣ˧˶˦ ˞˪ ˢ˲˵˸ˢPHP ˪˰ ˸˯˯˟˸ˬ ˢ˲˵˸ˢˢ .

 ˶˷˞ ˢ˷˪ˣ˥ˣ ˥ˣ˸˧ˮ ˟ ˫˧ˬ˧˧˵ˢ ˫˧˪˪ˣ˥ˬˢ ˡ˥˞˟ ˣˮ˞˴ˬPHP.

98

ˢ˧˪˴˶ˢ˟ ˧ˬˣ˥˸ˮ˧˟ˢ ˤ˩˶ˬˢ
˸˧˟-˟˷˥ˬˢ ˧˰ˡˬ˪ ˧ˤ˶˞ ˧˲˞ ˶˲˯

 ˧˧˪˪ˣ˥ˬˣˡˣ˞˯˲ ˫˧˶˲˯ˬ-

˫˧˧˞˶˵˞ ˸ˣˮ˩˸ ˸ˣ˲˷˟

˨ˬ˯ˣˬ ˶˞ˣ˸ ˶˵˥ˬ ˦˵˧ˣ˶˲˪ ˧˲ˣ˯ ˶ˣ˟˧˥˩ ˷ˠˣˬ

˪˰- ˡ˧˧ˮ˧˯ ˟˧˟˞

 ˸˧˧˥ˮˢ˟ ˢ˰˴ˣ˟ ˢˡˣ˟˰ˢ) ˭ˬ˶˦ˣˠ ˧˟˴ ˶"ˡCloudshare 'ˮˣ˞ˢ ,

(˸˧˶˟˰ˢ

˳˶ˬ 2011

	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Contributions
	1.2 Structure and Outline

	2 Pseudo Random Number Generators
	2.1 The Importance of Random Numbers
	2.2 What is a Good (Pseudo) Random Number Generator?
	2.3 Theory vs. Practice
	2.4 Popular PRNGs Review
	2.4.1 Linear Congruential Generator (LCG)
	2.4.2 Multiplicative Congruential Generator (MRG/MCG/MLCG)
	2.4.3 Combined MCG (CMCG/CMLCG)
	2.4.4 LFSR (Linear Feedback Shift Register)
	2.4.5 Lagged Fibonacci Pseudo Random Generators (LFG)
	2.4.6 Generalized Feedback Shift Register (GFSR)
	2.4.7 Twisted Generalized Feedback Shift Register (TGFSR)
	2.4.8 Mersenne Twister
	2.4.9 Blum Blum Shub (BBS)
	2.4.10 PRNGs in Standards
	2.4.10.1 NIST 800-90
	2.4.10.2 FIPS-186 DSS

	3 Related Work
	3.1 The RANDU PRNG
	3.2 Netscape SSL Attack
	3.3 Predictable Session Keys in Kerberos V4
	3.4 Attack on Apache Tomcat’s Session ID Generation
	3.5 Identical NFS File Handles
	3.6 Online Poker Exploit
	3.7 Linux Random Number Generator (LRNG) Analysis
	3.8 Windows Random Number Generator (WRNG) Analysis

	4 Analysis Methods
	4.1 Notations/Jargon
	4.2 Assumptions
	4.3 Common Analysis Structure
	4.4 Attack Vectors and Attack Assumptions

	5 C
	5.1 Introduction
	5.2 Microsoft CRT (MSVCRT) Generators
	5.2.1 (ANSI-C) C Standard Built-in Generators (rand() family)
	5.2.1.1 Design Space
	5.2.1.2 Under the Hood
	5.2.1.3 Properties Analysis
	5.2.1.3.1 Pseudo-randomness
	5.2.1.3.2 Backward Security
	5.2.1.3.3 Forward Security
	5.2.1.3.4 Default Seed Weakness

	5.2.2 rand_s()
	5.2.2.1 Design Space
	5.2.2.2 Under the Hood

	5.3 *NIX glibc Generators
	5.3.1 Introduction
	5.3.2 (ANSI-C) C Standard Built-in Generators (rand() family)
	5.3.2.1 Design Space

	5.4 BSD C Generators (random() family)
	5.4.1 Introduction
	5.4.2 Design Space
	5.4.3 G0: LCG
	5.4.3.1 Under the Hood
	5.4.3.2 Properties Analysis
	5.4.3.2.1 Pseudo-randomness
	5.4.3.2.2 Backward Security
	5.4.3.2.3 Forward Security

	5.4.4 G1-G4: AFG
	5.4.4.1 Under the Hood
	5.4.4.2 Properties Analysis
	5.4.4.2.1 Pseudo-randomness
	5.4.4.2.2 Backward Security
	5.4.4.2.3 Forward Security

	5.4.4.3 Seed Weakness

	5.5 SVID C Generators (rand48() family)
	5.5.1 Introduction
	5.5.2 Design Space
	5.5.3 Under the Hood
	5.5.4 Properties Analysis

	6 Java
	6.1 Introduction
	6.2 Math.Random
	6.2.1 Design Space

	6.3 java.util.Random
	6.3.1 Design Space
	6.3.2 Under the Hood
	6.3.3 Properties Analysis
	6.3.3.1 Pseudo-randomness
	6.3.3.2 Backward Security
	6.3.3.3 Forward Security
	6.3.3.4 Default Seed Weakness

	6.4 java.security.SecureRandom
	6.4.1 Introduction
	6.4.2 Design Space
	6.4.3 P1: MSCapi PRNG
	6.4.3.1 Design Space
	6.4.3.2 Under the Hood and Properties Analysis

	6.4.4 P2: nativePRNG
	6.4.4.1 Design Space
	6.4.4.2 Under The Hood
	6.4.4.3 Properties Analysis
	6.4.4.3.1 Pseudo-randomness
	6.4.4.3.2 Backwards Security
	6.4.4.3.3 Forward Security
	6.4.4.3.4 Seed Security

	6.4.5 P4: P11SecureRandom – PKCS-11 implementation
	6.4.6 P3: Sun’s default PRNG implementation: SecureRandom
	6.4.6.1 Design Space
	6.4.6.2 Under the Hood
	6.4.6.3 Properties Analysis
	6.4.6.3.1 Pseudo-randomness
	6.4.6.3.2 Backward Security
	6.4.6.3.3 Forward Security
	6.4.6.3.4 Default Seed Security

	7 C# (.NET)
	7.1 Introduction
	7.2 System.Random
	7.2.1 Design Space
	7.2.2 Under the Hood
	7.2.3 Properties Analysis
	7.2.3.1 Pseudo-randomness
	7.2.3.2 Backward Security
	7.2.3.3 Forward Security
	7.2.3.4 Seed Weakness

	7.3 System.Security.Cryptography.RandomNumberGenerator
	7.3.1 Design Space
	7.3.2 Under the Hood
	7.3.3 Properties Analysis
	7.3.3.1 Pseudo-randomness
	7.3.3.2 Backward Security
	7.3.3.3 Forward Security

	8 PHP
	8.1 Introduction
	8.2 lcg_value() PRNG
	8.2.1 Design Space
	8.2.2 Under the Hood
	8.2.3 Properties Analysis
	8.2.3.1 Pseudo-randomness
	8.2.3.2 Backward Security
	8.2.3.3 Forward Security
	8.2.3.4 Default Seed Weakness

	8.3 rand() PRNG
	8.3.1 Design Space
	8.3.2 Under the Hood
	8.3.3 Properties Analysis
	8.3.3.1 Pseudo-randomness
	8.3.3.2 Default Seed Analysis

	9 Summary and Conclusions
	10 Appendix A: Application Attack: Attack on PHP’s Session ID Allocation
	10.1 Introduction
	10.2 Session ID Allocation Algorithm
	10.3 Extracting the state of the generator
	10.4 Mounting the Session Hijacking Attack

	11 Appendix B: Code Snippets
	11.1 Java
	11.1.1 Java: SecureRandom
	11.1.1.1 perm_table

	11.2 .NET
	11.2.1 System.Random (Random.cs)
	11.2.2 System.Security.Cryptography. RNGCryptoServiceProvider (rngcryptoserviceprovider.cs)
	11.2.2.1 Microsoft.Win32 (win32natives.cs)

	11.2.3 win32pal.c

	11.3 *NIX C
	11.3.1 BSD
	11.3.2 SVID

	12 Appendix C: Configuration Files
	12.1 java.security default security file configuration

	13 Bibliography

