+*
*

* IDC Efi Arazi School
HERZLIYA | of Computer Science

¥

The Interdisciplinary Center, Herzlia
Efi Arazi School of Computer Science

Pseudo Random Nk
ber Generators In [er
gramming Languages

M.Sc dissertation

Submitted byAviv Sinai

Under the supervisioof Dr. Zvi Gutterman
(CloudShare, HYJI

March, 2011.

Acknowledgments

First and foremost} would like to thank my advisor, Dr. Zvi Gutterman, for the time

and effort he put intchelping me complete thiwork.

I would like to express my deepest gratitudeAsafRubin, a friend and eworker.

Il > m grateful for hi s hndihighingthhiaworkt i me spent
I would like to also thank Danny Slutsky and Yaniv Meoded, netiewed early

drafts of this work.

Special thanks to Dr. Anat Bremler and the NdSc CS progranoffice, for their

patience and help.

Finally, I want to thank my family who gave me the support | needed to invest pr

cious time working to complete this work.

a .

Abstract

Software developerfequentlyencounter the need to integrate random numbers in
their systems and applications. Applicatiarsl systemshat span from impleme
ing a new security protocol to implementing a shuffling algorithm in an online poker
game.Modern software languagesome totheir aid by providing themvith a rich
SDK that contains pseudo random number generation functmnhe developer to
use without the need to implement their own generatofdiese functions differ in
cryptographic strength and underlying algorithms used

In thisthesiswe research the implementations of random number generators in
popular programming languages. We provide a complete and detailed analysis of the
algorithms used, cryptographic strength and capabilities of these generdbans.
analysisshga ¢Sl {ySaasSa Ay (GKS 3ISYySNraG2NR AYLIX
implementationof the additive feedback generatom addition we provide a nen
trivial attack on the session generation algorithm in PHP that relies on our analysis of
PHRR A ISy SNI (2N

Table of Contents

ACKNOWLEDGMENTS..... ..ottt ettt et e e e ekt e e e e e s e aan b e e e e e ame e e s e nnbbreeaeeeaannnes |
AB ST RAC T ..ttt ettt ettt ettt e e e s bbbt ent et e e e e e R b e e e et e e e e e R b e b e et et e e e e e b e b e e e e e e e e nrnre et e e ame e e aan I
TABLE OF CONTENTS. .. ottt ettt m et e e e e s e s e e e e e s e ms e e e e e e e e snnrnneeas 1
LIST OF FIGURES.ttt ettt et e e e e s sttt e e e e e st e et et e e e e e e ennbeeeeeeeesnnnrneeeas VI
1 INTRODUGCTIQNcttiiiie ettt e e e e eme e e st e e e e e s s anbabeee e e e s s s e snnneeeeeas 2
1.1 CONTRIBUTIONS. .1ttt e eeeettti s eeseetai e eeseeast s aeeseesaaa e saaesssa s eaeseestanaaeeeeessanneeesessenns 2
1.2 STRUCTURE AN TLINEttttttteeeeeeesaaiitbsnsseseeeeaeaesessaasnnbnsneeeeeeeeaeessssaannnnnnnneeeeeeas 3

2 PSEUDO RANDOM NUMBERNERATORS........cuiiiiiiiiiiiiiteeee e 4
2.1 THEIMPORTANCE GRANDOMNUMBERSccvtttiiieiieeitin e ssesiin e e seesisinssesssssisnnessessnnes 4
2.2 WHAT IS £00D(PSEUDPRANDOMNUMBERGENERATCORiiiiieieieeeeeeeeeeeeeeeeeeeenninennns 5
2.3 THEORY VBRACTICE .t u ittt eeeit e ettt et e e et e e et e e et e e e et s s e e s e s eaaeeeateeeennneeeaanneennd 6
24 POPULAFPRINGREVIEW.vviiiieeeieeii ettt s e e e e et s e e et s e e e e s aata e e e eeeenan 7
24.1 Linear Congruential Generator (LCG)........cuvvveeiriiiieeeeeniiiiee e 1.
2.4.2 Multiplicative Congruential Generator (MRG/MCG/MLCQG)................... 7
243 Combined MCG (CMCG/CMLLCG)uuuuiieiieiaaeeiieieeiiiieieeee e e 8
24.4 LFSR (Linear Feedback Shift Register)...........ooovvvvvieieiiiiiiiiiiiiieieeeeeed 8
2.4.5 Lagged Fibonacci Pseudo Random Generators (LEG)..............ccoeeees 9
2.4.6 Generalized Feedback Shift Register (GESR).........cooccveiviiiiiieennne 10
247 Twisted Generalized Feedback Shift Register (TGESR)..................... 10
2.4.8 MEISENNE TWISTEL....cccieieeeieieiiieeeeeeeeee e e e e e e e e e e e e eeeeeeeaeraraaes 11
249 Blum Blum Shub (BBS).........coiiiiiiiiiiiiiieie e 11
24.10 PRNGS in Standards.............oooviiiiiieieiecicciss e ee e 11

3 RELATED WORKttt et e e ettt e e e e e e bbb e e e et e e e e e anne 13
3.1 THERANDWPRNG.....cciiiiiiiiiiiite ettt e e e e e e et e e e e e aeae s 13
3.2 N ST 07 =] N YN 13
3.3 PREDICTABIFESSIOMEYS IMERBEROBA.cceeeiiiiiiiiiiiiiiiiiiae e e e e e e e e e e e e e aeaeaeaeeeeeennenees 14
34 ATTACK ORPACHHOMCATS EESSIOND GENERATIQN. ... e e e eeeeeeeeeeeeeeeeeveeeieii s 14
35 IDENTICANFSALEHANDLESutuiieei et ee e e e et e e et e e e e et e e e eatn e e e e e e anaan e 15
3.6 ONLINEPOKEHREXPLOIT. ..t tttvtiieeeteetiiis e e eeeaeis s e e s seetasseaesaabsn s e s eessasnseaeeeatannaeeaeesnen 16
3.7 LINUXRANDOMNUMBERGENERATORRLRNGANALYSIS......cooeeeeieieeeceeeeeeeeeev 17
3.8 WINDOWIRANDOMNUMBERGENERATORNVRNGRANALYSIS....cvvvviiiriniiiiiiiiiieeeeeeeeens 18

4 ANALYSIS METHODS. ...ttt ettt eeet e eba e e e e s sanbe e e s 20
4.1 NOTATIONTARGONtttveereereeesssisusrenreneeeereeeeeesasanssesreeerrereeeesessnansssnserrereeeeeaees 20
4.2 ASSUMPTIONS. ettt ettt ettt e ettt s e e e e et eb s e e e ee b e e e e e e etbb s e e e e e e saa e e eeeeebanns 20
4.3 COMMONANALYSISTRUCTURE.e et eteteteeeeeeeeeetanestnnaassasaaaeseaeeaeeaaaseseeeeseesnsnnnnns 20
4.4 ATTACR/ECTORS ANKTTACHASSUMPTIONS. ...cevvvviiieeeeerinissaeessiinnseeseessssnsesseessannns 21

5 PP PP PPRPPRPRN 22
5.1 INTRODUCTION. 111ttt ettt eetttae e e e sttt s e e et eetasa e e e e s aasta s e aaaeaea e eaeseestan s eeeeeessaneeesensnnns 22
5.2 MICROSOFECRTMSV CRTIENERATORS ... utttteeeeeeaeaeaeeaesaiinrbeeeeeeeaaeseesasnnenees 23
5.2.1 (ANSIC) C Standard Buitt Generators (rand() family)............cccceeeeenne 23
5.2.2 (2= Tg Lo KT TP PRSPPI 25

53 FNIXGLIBESENERATORS ...ttt asaeseeeeeeaaaeeesereeeeeaesesnsssnssnnnnasaaaeseasasaeaeaaaaeeaeeee 26
5.3.1 Ta1 (oo (U o i[o] o AUURRR 26
5.3.2 (ANSIC)C Standard Buiih Generators (rand() family).............cccvveeeeee. 26

5.4 BSDOCGENERATORBANDON) FAMILYeititiiieieeaeeeaesaetisbee e eeea e e s e e sennsbenneeeeeeas 27
54.1 T (oo [8 Tox i o o I 27

5.4.2 D=1] o - Lo =SSR 27

5.4.3 (1013 I TS 28
5.4.4 [AN o F SR 29
5.5 SVIBCGENERATORRANBIB()FAMILY.....vveeeiiiiiieeeeaiiiee e e ettt e e et e s e e e 33
551 [[aYi foTo 18 o3 i o] o 1SS ROTRR 33
5.5.2 DESHN SPACE.....eeeiieiitiiee ettt e 33
55.3 Under the HOOG..........ooooiiiiiiieeeeeeecc e 33
55.4 Properties ANAlYSIS.........cccciviiiiiiiee e 35
N PPN 36

6.1 [N 2L0] D10 Lo T N P 36
6.2 MATHRANDOM. ...ttt e et e e et e et e e st e e et e e eaaa e estaeesatneaesanaeean 36
6.2.1 DESION SPACE. ... iiiiiiiiiii ettt e 36
6.3 JAVAUTILRANDOM. ...ttt et e e e e e et e e et e e e e e e et e eebaans 36
6.3.1 DESIgN SPACE......cc e i i e e e et e e e e ——————— 36
6.3.2 Under the HOOM..........ouuiii e e 37

c ®o do Properties ANAlYSIS..........uuuiiiiiiiiiiiieni e 38
6.4 JAVASECURITEECURBANDOM.uuuiiiiieeeiti i etetieeetneeeeaneesanneeestneesannseennnsesenaaeennnns 40
6.4.1 [T foo [0]ox i o] o TSSO 40
6.4.2 DESION SPACE.....eiiieiiiiiie ettt e 40
6.4.3 PLIMSCapi PRNG......ouiiiiiiiiieieie it e e e e e e e e 42
6.4.4 P2: NAIVEPRING.... ..ot e eeeaaad 42
6.4.5 P4: P11SecureRandapPKCS.1 implementation...........cccceeeeeeeeiieneeeenn. 45
6.4.6 t oY detlyit QRNG implementation: SecureRandom..................... 45

L0 - (8 N = 1 PSP 52

7.1 INTRODUCTION. ..ttt ettt eete et e e e et e e e e et e e e e e et e ea e et eaa e et e esneesnseennaetnsranaernreenns 52
7.2 SYSTEMRANDOM. ...uuciitneeiti e ee et e e e e et e e e e e e et e e e eea e e saa e e sateeeeaaeeesanaeeeraeeesnnees 52
7.2.1 DESION SPACE.eiiieiiiiiie ettt 52
7.2.2 UNder the HOOM..........ovueiiieeee e e 53
7.2.3 PropertiesS ANAIYSIS.........cuuuiiiiiiiiiiier e 54
7.3 SYSTEMECURITERYPTOGRAPIRANDOMNUMBEREENERATQR.cvveeeiiieeeieeeeieeenennn 58
7.3.1 (DTS o] g] o 1= T = J N 58
7.3.2 UNder the HOOM..........ovueiiieeee e e 59
7.3.3 Properties ANAIYSIS........cocciiiiiiiieeee e 60

[61

8.1 INTRODUCTION. ..ttt tttee e et et e e et e et e et e e e e et e eaeeaa e s e st e eaneesnseennaetneennaerneenns 61
8.2 LCGVALUED PRNG.... ..ot e e e e e e e e 62
8.2.1 DESIgN SPACE......cce i e e e e e e ————— 62
8.2.2 Under the HOOM..........ouuoiii e e 62
8.2.3 PropertiesS ANAIYSIS.......oooiiiiiiiiiiee e 63
8.3 RANI) PRING.......eiiiiiiiiiiiiie ittt sttt et e e s e e e e 67
8.3.1 DESION SPACE.....eeiieiiiiiee ettt e ettt e 67
8.3.2 UNdEr the HOOM.........coveieiieeee e 67
8.3.3 Properties ANAlYSIS........coouiiiiiiiiei e 67
SUMMARY AND CONCLOISE.......ccooiiiiiiieccee et e e 69
APPENDIX APPLICATIONATTACKE ¢! / Y hb IONID 8L OCATIDN....72

10.1 N al] 518 ox 1 [0 N TR 72
10.2 FSSIOND ALLOCATIONLGORITHM. ..eetneeeetieeeei e eeeeeeeeeeeea e e e e e e s et e eesaeeeaneeeernnns 72
10.3 EXTRACTING THE STRFEHE GENERATOR. .. .cuutituiitieeitierrieeteesteesnieesneesniestaeenneernnes 73
104 MOUNTING THEESSIOKIIJACKINBTTACK. ... ceeeeeeeeeteee e e e e e e e e e e et e e e e e e e e eeenans 74
APPENDIX B: CODERIRETS.....coottiiiiiiiieeieeeeetiime e e e e et s e s e e e s e e e saamn s e e e e e e eeeaennaana s 77

11.1 T A et e e e e et aee et ea e eeeeraaaaaeeerttaaaaaeeraas 77

1111 Java:SecureRaANAOM.........uoviiiiiiiiiie e e eeevvnneeeeeenn €

11.2 VL OO PRSPPSO PUPRPPR 17
1121 System.Random (RANAOML.CS)......couuiieeiiiiiiee et 77
11.2.2 System.Security.Cryptography. RNGCryptoServiceProvider
(rngcryptoserviceprovider.cs) e 81
11.2.3 WINS2PALCoo et 82

11.3 i) V1D OO P TR PTRRPPRPN 83
11.3.1 2] 5 PP RPU R PURPTRPORIN 83
11.3.2 SVID i 84

12 APPENDIX C: CONFIGURON FILES........ccooiiiiiiiiiie e 86

12.1 JAVASECURITY DEFAULTUSEKY FILE CONFIGTRAL......uvvvtieiiieieieieseeseseserereeeeessneianes 86

13 BIBLIOGRAPHLY. ..ottt ettt ettt e e bb et e s snreeeeaa 91

List of Figures

Figure 1 SSL Handshake Protocol lllustration...............ccccevieiiiiciiiennne 5
Figure 2 LFSR EXaMPI......ooiiiiiiiiee e 9
Figure ANetscape SSL Seeding Algorithm.............ccoeeiiie e, 13
Figure 4 Kerberos V4 GENEIratOr...........cccvveiiveeiiie e eee e 14
Figure 5 Flawed Deck Shuffling Algorithm..............ccccooiiiiii i 16
Figure 6 LRNG Structur.e..(.t.aken..f.d7om aut ho
Figure 7 WRNG Main LoefCryptGenRandom(Buffer, Len)............c............ 18
Figure 8 get_next 20 rcd _DBYteS()......ccovveeiiiieiiie e 19
Figure 9 deg, sep assignment per each flavor.............ccccoooveeiiie e, 29
Figure 10 AFG Algorithm Diagram............cccoveeiiieiiiiee e 29
Figure 11 State Initialization Code (srandom functian).............ccccccoeeeeneeen. 30
Figure 12 Rand48 Algorithm Cade............cccovveiiiiiiiiie e 34
Figure 13 Diagram of Translation from xsubi Array to the State Variable.)34
Figure 14 Th&tate after Initialization Using srand48...............cccceeevveeeinennns 35
Figure 15 Math.Random random method code.............c..ccooveeiiieeiiee e, 36
Figure 16 java.util.Random API methods.............cccoeeiiiiiiic e, 36
Figure 17 java.util.Random default seed implementation.................c..c..... 37
Figure 18 SecureRandom Class Diagram of Default Available SecureRad@domSp
Figure 19 SecureRandomSpi API methods..........cccoiiiiiiiiiiiicce 41
Figure 20 engineNextBytes(byte[] outBuf) pseudo cade............c.cceevveenne. 43
Figure 21 engineSetSeed(byte[] seed) pseudo code..........cccocoveviieiiieninnns 43
Figure 22 Seeding Generati@ass Diagram............cccocoveiienieeieenieesieenienns 46
Figure 23 Sun's default generator...........cccccoiiiiiiiiiiee e 47
Figure 24 P3 default seed algorithm...........cccco i 48
Figure 25 P3 system entropy gathering..........ccocceeveeiiiriiieiieeiee e 49
Figure 26 SG1 entropy gathering algorithm............c.cocco i 49
Figure 27 System.Random APL..........coooioiiiiiiieie e 52
Figure 28 System.Random initialization algorithm.............c.cccoceiiiniinnnn. 53
Figure 29 Stepping the System.Random generator............c.cccoevvvenieennnnn. 54
Figure 30 Cycle Length HIiStOGram............ccooiiiiiiiiiiiiie e 55
Figure 31 RandomNumberGenerator APL.............ccccoooveeiiie i, 58
Figure 32 Output calculation Of.Z..............cocoeiiiiiii e, 62
Figure 33 MCGs initialization algorithm..............ccccco i 63
Figure 34 PHP rand() default seed algorithm...............ccccoeoiiiiiiiiince, 67
Figure 35 Analysis Summary Table............ccccooi i 71

Vi

file:///C:/Users/aviv/Documents/University/IDC/Project/Gutterman/Project_Docs/Project_Papers/PRNG_In_Programming.docx%23_Toc287467951

int getRandomNumber ()

return 4. // chosen by foir dice roll.
// Quaranteed to be random.

1 Introduction

1.1 Contributions

In thiswork we study the implementatios) availabilityand security propertie®f Pseudo Random
Number Generators (PRNGS) in popular programming langu@gealgorithms usedire method-
cally presented irconcisepseudacode format with a thorough analysis of their security param
ters.

This work drives towards the goal that Knudtivisedin [1]: ¢ X f 221 |4 GKS &dzo N
each computer installation in your organization, and replace the random number generators by
good ones. Try to avoid being too shocked at what ydR fi®&milar tothese cautious lines from
Knuth we see iri2] while discussing sand()implementation ¢ Xb 2 ¢ 2 dzNJ FANRIGZ |y
important, lesson in this chapter is: be very, very suspicioasg$terrsupplied rand() that rese-
bles the one just described. If all scientific papers whose results are in doubt because of bad rand()s
were to disappear from library shelves, there would be a gap on each shelf about as big as your
fist.€

Most programming languages have several flavors of PRNG implementations for thenprogra
mer to choose from. The flavodiffer in their security properties andometimesalso in their @-
sign and API.

Thiswork has important practical and theoretical implications

1. A PRNG is its own kind of cryptographic primitive, whitprogramming languages offer at

least one implementation ofA better understanding of thesemplementatiors will make it
easier to choose the correghplementationto use
2. A PRNG is a singl®ipt of failure for many realvorld cryptosystems. An attack on the
PRNG can make the careful selection of good algorithms and protoetyant

3. Many systems use badflesigned PRNGs, or use them in ways that make various attacks
easier than need bélery little existsin the literature to help system designers choose and
use these PRNGs wisely.

4. Mo st devel opers don’t understand the diff

choose their PRNG flavor wrongfully.

In this work we concentrate on the alyais of 4 very popular programming languages (as
claimed by the TIOBE Programming Community Index availap®)irC(5), Java(Chapter6), C#
(Chapter7) and PHRChapter8). For each programming language, we survey the relevant-info
mation and papes that discuss the PRNG in that language. We then proceed to describe the exact
implementation, design and configuration options that are available in this language.

The appropriate APl documentation for each language usually served as a first steimakhe
sis. However, most of the documentation we encouetéwas extremely poor in its thls of the
PRNG, and/or consisted of various inaccuracies. In order to gain further insight to the exaet impl
mentations, we used static code analysis techniquesduiition, in some programming languages
suchasC#’' s Syst em. Se c(tection’.g),. w€ werepfaroedyto se\etsey engineer the
code using commodity toolsuch as theDAPro disassembld#].

After understanding the exact implementation and algorithms used we analyzed the security
properties of the generators a similar framework to which is described%hand|[6].

For ease of referencke or devel opers i nt er wesatsepmovidersomt he *
plete summary table of the properties of each programming language and vafiaatable care
viewed inFigure35.

While analyzing the security of the implentations we found a bug in the PRNG implengent
t i on SYystem@Randagenerator Section7.2.3.] —the bug causes the generator to not have

2

the maximalperiod length. Under certain relaxations we continued to analyze this bug andrdemo

strated concrete seeds that cause the generator &wvdr an extremely short period qf in its least

significant bitWe further foundanost r i vi al attack on one of PHP’
We continued and showed an unpublished attack on the session generation mechanism in PHP

(seelOfor details) The attack utilizes an attack we foundag_value(see sectior8.2.3.1), which is

one of the PRNG implementatisthat exist in PHP.

1.2 Structure and Outline

The rest of this work is structured as follows. Chapter2 we provide important background for

this work, surveying applicable theoretical Pseudo Random Number Generators and explaining the
properties of good PRNGB Chapter3 we present the related work, which inclusénfamous
attacks of PRNGs and analysis results of Operating System based geneoakafsat will be refe-

enced throughout this workChapter4 comes to provide common context, language dine attack
vectors used to analyze eaghrogramming languageChapterss, 6, 7 and 8 contain the actual
analysis of the programming languages C, Java, C# andd3deéctively.We present our conat

sions and a summary table of our results in Chapt&Zhapterl0 (Appendix Acontains our attack

on the session ID generation in PHP and the reth@Appendtesare code extracted and/or used
throughout the analysisDue to the immense amount of code reviewed in each analysis we only
present the code in the Appendices if reverse engimagfor other decompilation method¥were
needed to extracttecodeor i f the code i mpl e memwdrdtaus on di dn

2 Pseudo Random Number Generators

Real random number generators are hard to come by. These generators often require hasing sp
cialized hardware and use physical sources sucthesnal noise in electrical circuits or precise
timing of Geiger counter clickg,8,9,10]. Due to thismost applications that require random bits
use a cryptographic mechanism, called a Pseudo Random Number Generator,(foRj¢G¢rate
the (pseudo)andom numbers.

In this chapte we discuss the importance of randonumbers and provide some examples of
the use of random numbers in popular applications. We continue to discussishiection between
theory and practice in sectic®3and finish with a survey of popari PRNGs in secti@4.

2.1 The Importance ofRandom Numbers

Random numbers are prevalent in many computer science applicafitrese applicationsiclude
network protocols design (e.gT,CP sequence numb¢tl]), algorithmic research (e.g., random
algorithms) various unique idetifiers (e.g.,UUID[12]) and security protocols (e.gTLY13]). Ran-
dom numbers areonsidereda basic building block in almost every cryptographitesoe (e.g., RSA
[14]).

Having a secure source of random numbers is a critical assumption of many protocol systems.
There have been several high profile failures andom numbers generators thatdeto severe
practical problemsPerhapghe most renounced one was in the Idetpe implementation of SSLv2
(3.2)in 1996 For an overview of popular PRNG based attacks, please re3er to

SSL as an example of random numbers importantiee SSL protogaihich was originally et
veloped by Netscapeas one of the basic building blocks that allow therd Wide Welto function
as we know it. Eommerce sites use SSL to secure online transactions; banks use SSL in order to
securesensitive communications of thealients and their servergpopular hosted solutions, such
Googl e’ (sww@med.com)use SSL to seautheir communications and many others. One
can’'t ev e nrepéraudsibngf mecurithh aws in the implementation (or design) of the SSL
protocol are to be found.

The security of SSL, as in many other security schemes, depends on the attackeingattie
to predict the secret key of the scheme. Thus it is vital that this secret key would be derived from an
unpredictable random sourceRandom numbers are used several places in the SSL protocol.
Random nonces are created during thlandshake Ptocol and passed in theClient Helloand
Server Hellanessages. These nces are important inputs to prevent replay attacks and are also
used in deriving the future keyssed for encryptionMost importantly, andom numbes are used
during the creation of theore master secrethat is sent by the client to the server during tkey
Exchanggphase in the handshake protoc(ihis actually serves as a secret key between the pa
ties). Using weak random numbers in SSL would have tb®gpol crumble down.

An illustration of the SSL handshake protocol can be viewE@yurel below.

2.2 What is a Good (Pseudo) Random Number Generator?

ient Serv

er

Client heyyq
(//Eeﬁgﬂ“’/"

‘W
exchande

gerver ke

39
Certificate_TeAES
Ser\uat_"""‘c'—dcme

W’
C,

lien

Certiflcate verify

Chan
o o
W
C
change cipher SPS

(W

Figurel SSL Handshake Protocol Ifiretion®

As notedearlier, obtaining randomness oa computer is not an easy taak a Turing machine is, by
definition, deterministic.Generating real random numbers often involve having specialized- har
ware thatis sensitive to physical biaghich needs postprocessing tasks to remove this bixe
to these most applications use Pseudo Random Number Generators implemented in software
when in needf random values.
We continue with definitions of PRNSY re-phrasing a bisome ofthe definitions available in
the Handbook of Applied Cryptograpfig].
Definition 1 (PRBG)A Pseudo Randomit Generator (or PBG) isa deterministic algorithm
which,given a truly random binary sequence of len§@foutputs a binary sequence of length Q

GKAOK al LIJISIF NA ¢

G2 0S NIYyR2YO®

¢CKS Ayldzi G2 Gf

PRBG is called a pseudorandom bit sequeFie.initial random inpuof lengthQis referred to as

the seedof the generator.

The purpose of PRNGs to take asmall real random sequence and expand it to a sequence of
much largerdength;in such a way that an adversary cannot efficiently distinguish between output

sequences athe PRBG and truly random sequenceteafjtha

Definition 2(SPRNG)A PRNG whose output cannot be distinguished from a true random output

by a polynomial time algorithm is a Secure PRNG (SPRNG).

Random numbers are used in many applicatiaech implementation may have differengr+
quirements from its PRN@&onsider the need of having randommloers for simulations purposes
here the basic need for the random numbesso have gooduniform) statigical properties.How-
ever, for instance, it ialright for the sequence to repeat itself from one simulation run to another.
It is evenimportant that the user can repeat simulations ea3wis is, obviously, not the case with

cryptographic systems.

Y1 1ustration

taken

from Prof.

Amir

He rCobnemmegr c“el” n tlreocdt

notes available alttps://sites.google.com/site/amirherzberg/introductiontosecurecommunicationandcomm

5

https://sites.google.com/site/amirherzberg/introductiontosecurecommunicationandcomm

In thisthesiswe are inteested in the requirements of a PRNG fronergptographicperspec-
tive. We continue to outline these requirementssing common terminology coined [B], which
being aSPRNG@ only one of them.

A PRNGnust be secure against external and internal attacks. The attacker is assumed to know
the code of the generatognd might have partial knowledge of the entropy used fofreshing the
generator’ s state. rRightrhava the abibty accompronhising thet inteanalk e r
state for a limited timeTheSecurity requirementof a PRNGre:

A PseuderandomnessThe generator's outpushould seenrandom to an outside observeThis
requirementis identical to the definition of a®PRNGEven if theattacker is given all the au

put, the attacker can’t bteoftebutpet. t o efficient
A Forward security(or Backtracking Resistance)An adversarywho learns the internal state of

the generator at a specific time cannot learn anythabout previous outputs of the generator.

This requirement is easily met if the generator is a one way function.

A Backward security(or Prediction ResistanceAn adversaryho learns the state of the genar

tor at a specific time does not learn anythiagout future outputs of the generator, provided

that sufficient entropy is used to refresh the generator's statee only means to use in order

to meet this requirement is to periodimally

tropy.

2.3 Theory vs.Practice

A correct implementation of a PRNG is crudiie design of the security protocol could fieewless;
however an incorrect or weak implementation of the PRNG could cause the whole dedagh to
Despite the fact thathere are secure proven PRNGs for almost thirty yesnsh as written in
[16,17], many security protocol$mplementationsare implemented with weak and vulnerable
generators.

Sothe obvious question is why dwee still suffer with so many adequate generators used and
implemented? (For some famous attacks and bugs on PRNGs the reader is encouraged to refer to
chapter3) In our opinion, the major reasons for this are:

1. Performance-as in the case of many theoretic@ncepts—when coming to implement an
algorithm there are performance considerations and problems that are not always aecoun
ed in theory.Consider foexample the generator by Blum, Blum and ShLifj, described in
section249The generator’'s security semsipribenagmed on
bers. However the algorithm itself is very CPU intensive, thus yielding in very few inmpleme
tations actually using this generator.

2. Attacks Due to Ecosystemmany of the PRNGs degied rely on sound mathematical basis
and are wusually even described as mat hema:
happen due to the fact that theoretical ground of the algorithm is shaky, but due to other
practical considerations such as adherioga specific API, meeting coding standards er d
sign goals of the entire esgstem.

3. Level of Expertisemo st dev el opedinthe fiald af Gryptographe/,rner are they
aware of the potential delicacies in the fieevertheless, most developgwould probably
encounter during their aaer the needfor generating random numbers. A poor choice of an
API functiormight result in major security problems.

One of the main purposes of thigork is to aiddevelopersovercome the reason statkin Arti-

cle 3 above n understanding the strength of each PRNG offered to them in their programming
language of choicelhis in turn would hopefully decreasiee probabilty of choosing a PRN@
plementation that § too weak for the application.

One of the most famous books that try to deal with the lack of expertiseneldiabove is the
book Writing Secure Code publ i shed i n MilRaél Howarg andDavid ldaBco f t ' s
[18]. In this book the authors takihe time to discuss the proper way of using the random gearner
tors available in Microsoft rutime libraries. Most importantlthey suggestnot usingsome of the
weaker variants in cryptographic sensitive applicatibhe reader is encouraged to reatlapter 8
in the bookfor more details

2.4 Popular PRNGs Review

In this section we review the theoretical principledgorithmsand properties of PRNGs thate
mostly based on algebraic concepts, and are used as building blocks for the PRNGs imglement
tions in various programming languagé¥e will use this review as reference when stating the
theoretical PRNG of each implementationapplicable analysis s@mns.

2.4.1 Linear Congruential Generato(LCQ

Probably the most fawmus and popular PRNi@plemented today; we found this type of generator
in almost every programming language covered as one of the basic generators avhiliadiesed
on the scheme introduced by D. H. Lehmer in 154.

LCG is based on the followirecurrence

() Gy »aéan ¢ ™

Wherea, candm are constants, and is the seed.

Choice of a, ¢ and mn order to guarantee &ull period of O care must be taken when chee
ing these parameters. Knuth1] has a detailedliscussion of the properties that these parameters
should meet We summarize his recommendations here:

1. @andd should berelative primes.

2. @ & pshouldbedivisible ty al prime factors ofm.

3. wshould bea multiple of 4 iimis a multiple of 4.

2.4.2 Multip licative Congruential Generator MRG/MCGMLCG)

An MCG (Multiplicativ€ongruentiaGenerator) is a LCG thahas® Ttin its recurrence. Accdr
ingto[1]t hi s was actually Lehmer’s originélmagener
a possibility.

The random number generation of this generator is slightly faster in this case; we note that this
generator doesn’t & thasitse Ap’ t etheofuh peziadedare weowant
@ to be relatively prime tax for all&€, and this limits the length of the period to at mgsth |, the
number of integers betweemandd that are relative primeo & .

Knuth discusses the maximyperiod of this generator in depth and provides the settingsdiee
ed in order to achieve this periodn order to reach anaximum periodofy O , where_ a is
defined below, the following settings should exist:

1. @ is relatively prime ta .

2. wis a primiive element modulad .

R Y
_n n n ph Qm
_Nn 81 awan MBhn

Knuth notes that whem is a prime we can reach a period af p, which is onlyl less than the
maximum period if we were to use an L& Eh w T

2.4.3 Combined MCGCMCGCMLCQ

There were various attempts in combining several LCGs in order to construct a new PRNG. The
results are PRNGs with larger period and sometimes perform betteorime sandomness tests,
however pose no cryptographic advantage.

We will examine a specific attemptnt r o d u c e d [BOy The gekecatoryiseintendechto
be efficient and portableHis paper discusses the general theory behind the generator and also
introduces two new generators, one for 32 bits based machines and one for 16 bits based m
chines.

The concrete generator sugsfed for 32 bits based machines is:

MLCG1
i iz a¢ @ i z1 mwmpdtée g Yu
MLCG2:
i iz a¢Q i 21 Mo wE X CT W
Combined MLCGs:
a i i aewm p i T e SR
This combined generator achievespariod of e e cdzp .
This generator works as long as the machine capresent all integers diween ¢
Yue Q Yo

L ' E ¢ ysgper elaborates regarding how to implement this generator in a portable manner on
different machines. 1hH21] Schneieprovidesthe exactCcode of implementing this generator.

2.4.4 LFSR (Linear Feedback Shift Register)

Linear Feedback Shift Register (LFSR) is a shift register whose input bit is a linear function of the
previous stateLinearFeedback Shift Registeise prominent building blocks in many cryptographic
fields, such as stream cipherBhey are often liked wk to the fact they are easy to implement in
hardware, produce sequences of large period, have good statistics properties and can be analyzed
using algebraitechniques

An LFSR is comprised tbfee parts: a shift registera linear feedback functionand a clock
which times when the shift occur3he shift register is a sequence=obits (in this case weefer to
this shift register asing @ "@hift register).

Each time an output bit is needed, the generator is stepped by shifting all the pdsitlonto
the right. The new leftmost bit (thenew input bit) is computed as a functioof the other bits in
the register. Theutput bit isthe bit in stage Othie Isbh. Thefeedback functionis the XOR function
(the only linear functia of single bity of certain bits in the registethese bitsare called thetap
sequence.

Thetap sequenceis represented by a polynomiaf the form™Ow p @ wo E
@ wheread Tp fp "Q &.1fG pthenthe'Q stage is in the tap sequencEhis polynomial
is also referred to as theonnection polynomial

Figure2 shows an example of an LFSR whose connection polynomialds @ .

bs| by | by | by —output—

Ry
NP

Figure2 LFSR Example

Maximal Period: the LFSR can result in very long periods; the maximal period of an LFSR is
and it is reached only when its connectipolynomialOw is aprimitive polynomialover

@ and the initialstate is not all zeroThese LFSRs are calledximumlength LFSRs or maximal
period LFSR&he output of a maximuAength LFSR with nexero initial state is called am-
sequence

Algebraic form:considering the state of the generator also as a polynomial, hmike was
shown in the connection polynomial, however here each statechitrepresentsan applicable
coefficientin the polynomial Let"Yw be this polynomial then stepping the generator is equieat
to multiplying by x modul@(x) i.e.,calculatingn " & € (Dw.

Schneieff21] surveys numerous PRNGs (and stream ciphers) that use different LFSR and LFSR
combinations.

2.4.5 Lagged FibonaccPseudoRandom GeneratorgLFG)

Subtractiverandom number generator algorithmthis is the suggestion ¥nuth[1] (pp. 17%173)
for a portable, efficient generatoflhe emphasis was on a portable generator that only uses integer
arithmeticbetweenp m AT @\ 1t The generator is based dhe followingsubtractive recursion

W () () Geé@h & m

Knuthargues that the exact value af isirrelevant;however it does have to be with big magn
tude and evenThe value suggestebyKnuthisa p 1t

There are severaimplementations for this generator. nKith offers an implementation in
FORTRAM his book. There is also anplementationin Cdescribedn [2], namedran3.

A generalization of the generator introduced by Knuth isaggedrFibonacciGeneratorsince it
is ageneralizatiorof the Fibonaccsequence These generators use an initial sequencho 8 Fro
and twoandags"”,

The recursiorof this generators:

A O A® aé@h m Q@ & Q

The el ements ar e bc@haerbmary oparation)e agdnerall@narg operation,
which can besubtraction, addition, multiplicatioror the bitwise arithmetic XOR. For addition or
subtraction, thew s ar e e i téhée@ ori realsengod rls For multiplication, odd
gersd € 'Q .

Period:in [22] Marsagliashows themaximal period of this generatordepending on the binary
operation shown while assuming that the modulus used is a power oihnZ23] we seea good
summary of this maximal period, assuming tf@b ¢ Qare chosen properly and is defined as

& ¢ (w being the machine word sizeWWe follow with the summary regardintpis maximal
period:

$ (Operation) Maximal Period
S ¢ p
geQ ¢ ¢ p
LR ¢ ¢ p

Tablel Maximal Period

2.4.6 Generalized Feedback Shift RegistéGFSR

Introduced by Lewis and Payme 1973[24]; the general idea is to use the ability of the CPU to
apply the XOR operation on wordghis can be used to rum LFSRs in parallel, wheneis the size
of the machine word. Another point of view of this generator is to consider it as an LFG with the
operation, $, taken as the bitwise XOR operation.

Each LFSR can be considered as omeindlependentchannelsThe GFSFcurrence follows

O G & h & nm pMB

Wheretd ¥ mip FEN O, @ pisa primitive polynomial angandqare constantsp > q
One should take care with the initialization of the generatnf24] Lewis and Payne suggest
initialization method which gives the sequence some desirable statigtiopkrties
The main merits of this generator are:
1. The generator is fast. Generatiagnvolvesfew machine operations per generator step.
2. Thegeneratorcan achieve an exceptional long period, without dependence ohtaehine
word size. Ip andq are chosen properly the generator achieves a peabd p.
3. The implementation is portable, i.e., is independent of the machine word size.
In [22] Marsaglia wonders why this generator has been gisech serious consideration due to the
fact that generators with addition or subtraction as the chosen binary operation have bettes-stati
tical properties and longer periodi [25] we have a good oveiew of the drawbacks of this ge
erator:
1. The initializationprocess of choosing the initial values is criti€éabodinitializationis rather
costly.
2. The generated sequenger channels known tohave poor randomness properties
3. Although the generator can achieve a long perwdd p, it is shorter than the theoretical
upper bound period of, (i.e., the number of states possibléh order to achieve aal
sired cycle lengtlof ¢ p, the generator requires a memory pfwords

2.4.7 Twisted Generalized Feedback Shift Register (TGFSR)

Twisted Generalized Feedback Shift Register (TGESE) addresses all the drawbacks of GFSR: it

achieves a period of p and removes the dependence of a carefully initialized sequence.

Further more, It doesn’t necessary need the po
The recurrence of a TGFSR follows:

(AT A G d 6h & nm pB

Whered M 1ip RN 0,0 « pis a primitive polynomiald is the twisting matrix p
andq are constantsp > q We regard® as a row vector and matrix multiplication is done med

lo 2 The multiplicéion byAi s ¢ atwigt’e.d a *
This generator solves the above problems of GFSR:

10

1. Neither special initialization process nmrecautionsare needed This is dued the fact that
unlike the GFSR, this system is not composed of many independent systemsdng.,
LFSRs) but of one unit is which all bits affect each other.

2. The wusage witha taretlly thoseA imlptroVes the randomness property of this
system.

3. With a proper choice of\ the system achieves the maximal period, ie., p (achieves
all possible states except theero statg. This means that a desired period can be achieved
with the minimal needed size of internal state.

4. This generator has the property pfequidistribution which means that anypon-zero se-
guence ofp words appears wh the same frequency as the output sequence.

2.4.8 Mersenne Twister

Mersenne Twistef27] is an improved variant of the original TGFSR. It achieves a very long period of
q p and extremely good statistical properties whdtll being very efficientlts name derives
from the fact that its period length isMersenne prime

2.4.9 Blum Blum Shub (BBS)

Most of t he P RN@Gbnowwnere mestlyentendedrtebed used in simtibns and
other statistical purposes. In order to provide good PRNGs for cryptographic purposes, special
PRNGs were constructed. Despite the fact t hat
that has an implementation focryptographic PRNGs that amdt Operating System basede ' | |
describeone of the mostpopularones here.

Blum Blum Shub (BBR)/] is a generator whose security properties are based on the coaiput
tional difficulty of integerfactorization.The biggest caveat of this generator is that it is very slow.
Following this, it is not appropriate for high performance environments and simulations.

The recurrence of BBS follows:

() O G&Q

Where0 1 njis the product of twolarge prime numbersthat are congruent ta & € @. The
pseuderandom sequence generated by this generator is the sequence otoiis8 obtained by
setting ® ® @& ¢ 'Q and extracting thebitd 1 ®1 "©0.dhe seedy should be a Inte-
ger that is not 1 or divisibley U . Usually the parity is taken to be the least significant bit.

The generator is secure as long as the factoring problem remains hard.

2.4.10 PRNGSs in Standards

Recently, therehave been some attempts to standardize the implementation of pseudo random
number generator s. The most compr ehen-80i[28le st
that exclusively address the need of generating pseudcamdom numbers.Another notable
standard thatdescribesconcrete PRNG implementations exists in Appendix 3 of thel8®HSS

(Digital Signature Standarf®9]. We will briefly describe the key componsof each standard.

2.4.10.1NIST 80690

This publication is a relatively new publicatiorhis standard is the basis of the new Windows-Ra

dom Number Generator that is implemented in Windows versions higher Wemows Vista SP1

This Standard has completketails of what is the design of a deterministic random bit generator
(DRBG), how to deal with errors, when to reseed, which seed sources to use, requirement of the
ability to “personalize” a random stream etc.

11

The algorithms presented there are analyzesing similar security properties that were me
tioned in 2.2 Furthermore, per each recommended generator they present detailed guidance
regarding maximum requestsetween reseeds, maximum entropy ing#nd more.

They present algorithms that are based on hash functions such a4 8HAHMAC as the ge
erator function, generators that are based on block ciphers such a§3®E8nd generators that
are based on number theoretic problems such as dual ecliptic cubaes.Shumow and Neils Fe
guson in[31], showed a backdoor in the latter

2.4.10.2FIPS186 DSS

Unl i ke MNoD Sandasd thi @ublicatiod o e ssaolélytaddress the objective of generating
random numbers This standard describes the D@3gital Signature Standardhplementation;
however for proper implementation of DS&ndom numbers are needed. This standard addresses
this need by suggesting a pseudo random number generator based o B2Ain Appendix 3 of
the document.

The Standard presents two PRNG implemdntat: one that is based on SHAand another
that is based on DHS3]. The formetis the basis for the previous version of the Windows Random
Number Generator that is described in secti®®. The algorithm uses a ongay functionG(t, ¢)
where t is 160 bits, c is bits(160/ b/ 512) and G(t, c) is 160 bits. The algorithm also optionally
supports a user provided inpuln the original publicationthe PRNG was specifically described to
be used with the DSA (Digital Signature Algorithhpwever in a change dating Octobéef 3001,
the authors also provided a general purpose variation of the algorithm.

In[34] we see a cryptanalysis of the DSS algorithm in case an LCG PRNG was used.

12

3 Related Work

There i s much published on the topic of pseuc
describe some important related work of analyarsd attacksof popular PRNG# very good ove

view of PRNG bugs and suggestion for a secure construction tenwvby Peter Gutmanfi35].

Schneier and Kelsd$] have a good enumeration of different attack vectors against PRNGs

links in[36] comprise a thorough list of references that relate to cryptographic PRNGs.

Two of the most importantanalysest h a t we ' | | amalipsesof tha Lireix Ramdem
Number Generator and the Windows Random Number Gener&it will refer to these works in
this paper wh e n eanemplememradtidnlusesanhQswWOperdtiregtSystenbpsed
generator.Due to the fact that our work mostly targets software developers we will déscribe
popular attacks orsoftware systems and applicatioisat had an ilimplemented or iHdesigned
PRNG.

3.1 The RANDU PRNG

One of the most infamous PRNGs ever designed. This generator was available as a scientific subro
tine for the IBMMainframe computer $ystem/360 computgrsince the early 1960sand its use
soon became widespread.

This PRNG had extremely bad statistical properties due to the ill parameters chosende impl
ment it. Kunthhas a thorough discussion [iy (pp. 104) regarding this generataand refers tathis
generatorasd X NB I f f @meriiehNg\Babtliis3yénerator had actually been used on applicable
machines for about a decadand saying thatd X A 14 @SNE yIYS w!b5! Aa ¢
into the eyesand stomach of many computer scientists!

The generator is defined by the following recursion:

O QE AN PLLE Wl € Q

This is an MCG with badchosen parameters, thus not achieving the full expected period and has
some very distinctly nonandom characteristics.

Much was then studied regarding the choice of parameters for an MCG and specificallrthe p
rameters in the RANDU generator; most notaisithe work of Marsaglia iip37], the work of Knuth
in [1] and thecomprehensive analysis conducted 33].

The ramifications of the statistical problems discovered in this generator were tremendous.
Somé even say that due to the widespread of this generator much reseducing the 1970sn
fields that needed random numbers.¢e, simulations) is less reliable than it might haeen

3.2 Netscape SSL Attack

As mentioned in2.1, SSL’s security reli ethe deaeakeymaster on r
secret,is generated using a PRNIG.1996[39] a weakness inti s PRNG’ s sasm-di ng
plementedi n t he Netscape browser’s was discovered.

The seeding procesd the PRNGhat wasusedi n Net scape’ s 8sSlescribetip| e n
in [39] follows:

(second s, microseconds) = time of day; [* Time elapsed since 1970 */
pid = process ID; ppid = parent process ID;

a = mklcpr(microseconds);

b = mklicpr(pid + seconds + (ppid << 12));

seed = MD5(a, b);

OORWNBEF-

Figure3 Netscape SSL Seeding Algorithm

2http://en.Wikipedia.orq/wiki/Pseudorandom number_generator#Problems_with deterministic_generators

13

http://en.wikipedia.org/wiki/Pseudorandom_number_generator#Problems_with_deterministic_generators

Effectively the seeding entropy sources are the time of day (seconds and microseconds parts),
current process id (pid) and parent process id (ppidhe functiongnklcprand MD5are shown only
for completeness of the codeubhave no security significance.

The authors attackheseentropy sourcsin the following manner:

1. seconds- easiest to find out; our attacker could use a sniffing tool to guess the seconds
component.

2. microseconds-relatively easy to guess using brutede since there are only te ¢ mi-
croseconds in a single second.

3. pid, ppid- If we assume that our attacker has access to the attacked machine, wesean a
sumeshe can see these variables (e.g., usinggheommandon a *NIX machine)lf we &s-
sumethatoumat t acker doesn’t have accetosakésomet he
more observationsFirst we observe that due to the shift operation showed in lina the
pseudacode we have only 27 unknown bits, which is not the theoretical value ofn30 u
known bits sincey/pid on *NIX machines is 15 bits lorihe authorscontinue to narrow this
down by observing thappidis usually just a bit smaller thamd or even has a constant ka
ue of 1 (theinit process); this leads tpid and ppid having just slighyl more than 15 bits of
entropy. Last, process information can often leak from applications, thus contributing to the
fact that this is not a good secret.

This gets us to an efficient att ack Nastapeh et we

fixed this vulnerability in the new version of its browser.

3.3 Predictable SessionKeys in Kerberos V4

Kerberos[4Q] is a security protocol designed to allow entities communicating over asecare
channel to provide their identity in a secure fashion.

Kerkeros relies on a trusted party calld¢ey Distribution CentdKDQ that is responsible for
maintaining a databas of secret keyper each entity in the network. This secret key is only known
to the clientandto the KDGand is based on a shared secret (e.g., password) between theTte
KDC then uses session keys to provide the client of tickets to serviceshtéhat sligible to use.
These tickets are used in the remaining of the protocol when interacted with the Service Server
(SS).

As shown irf41] , the (session) key generation algorithm used in versioh #he protocol was
flawed and allows prediction of these session kayach like in theNetscape attack (sectioB.2)
the flaw was in the seeadg algorithmof the PRNGThe initialization was based on thiene of day
process Iand machine ID which have very limited entropy resulting in an applicable brute force
attack. The pseudo code of tlyenerator useds shown irFigure4.

1 srandom(time.tv_usec " time.tv_sec " getpid() * gethostid() »
counter++)
2 key=random();

Figure4 Kerberos V4 Generator

34 1| OOAAE 11 ! PAAEA GeriefathiA 06 O 3AO0OOETT) $
Gutterman and Malkhj42] published an analysis and concrete attack of the session ID generation
in the Apache Tomca#3] Java servlet coainer implementation.

To better understand the implications of their 1§ some background is needeHTTP is a
stateless protocotthis makes the protocol relatively easy to implement and contributed greatly to
its huge popularity. Due to thigroperty, mechanisms that allow stateful browsing were created,;
two of them are the cookie mechanism atdRL rewriting. This stateful browsing is what allows

14

websites to save our shopping carts when we buy online, save our customer preferences, persona
izeour browsing experience and more.

A special cookie is the session cookie, in which a web server typically sends a cookie containing
a unique session identifier. This unique session identifier has to be randomly chosen to not allow
others to impersonate 8. The technical term foan attack where an attacker impersonates an
eligible user by impersonating her sessismalledsession hijacking

The authors found a weakness in the seed implementation of the PRNG used to gensrate se
sionIDS n A p a c hteséngr Theoweakress that they found holds even if the implementer
decided to use the more secure Java PRaN@.security.SecureRandom

The attack showed that the amount of random
They showed that the seedas constructed from a timing based parameter, the system time in
millisecond, androm the toString()value of @g.apache.catalina.session.ManagerBase.jaJzey
continued to show that the toString()s u n p r ewhsredtcadna theunprgdictabilityof the
returned value ohashCode()On Windows machinethe hashCode(implementationuses an LCG
to generatethe haslt ode val ue. They showed that this va
bits to the seed.

Their final result is that the amount of unknown bits we have in the seed ranges from 32 to 43
bits. Another contribution of this work is a novel approach of spaoe [44] tradeoff to effectively
attack PRNGs, which was demonstrated on the attack above.

Thar attack procedurenas that with the usage ddpaceTime tradeoff the attackeruygsses all
the bits of the seed anthatches the result to real sesskis. After matchingthe attacker recovers
the state of the PRNG and from now on she is synched with the genérator sltowirg der to
easily hijack sessions.

3.5 ldentical NFSFile Handles

An infamous example of arogrammingbug in the seeding process of the PRNG used to generate
NFSNetwork File Systeniijle handles in the Sun OS NFS implementatibe attackis described in
[45].

We will start and briefly explain whatiFS handles arand why they need to have random
properties.NFS is a protocol originally developed by Sun in 1984 that allows a user on a elient m
chine to access files that reside on a different machine (server) over the network in a similar way to
accessing files on the local storage/machine.

When a client wishes to access a remote file on the server machine it sends a request with the
desired NFS file handle to the server. This NFS file handle is the identification of the object that the
client wishes to acces3he client receiveshis handlein the first time hewishes to access this
object, by using thenountrequest The server checks that the client has permissions to access this
file system and returns the handle, if permission is granted.

Every client that has a valid file handle can interact with the NFS server, while checks are mostly
done during themount operation. In order to make sure that clients go through theunt opera-
tion, where permissions are checked, the file handles are gamtb prevent malicious clients
guessing a valid file handle.

Whenever a file system is created a program cafhndis run to initialize the file handles
with pseudo random values his implementation initialized the generator withe process |Dof
the initializing procesand the time of day. Due to an implementation bug, the time of day value
was never initializedThis meant that the time of day variable contained predictable garbagie va
ues, depending on the system architecture used. Effectively the process ID was uséar the
initialization of the generatarThis process ID was also highly predictable, as most deployments

15

used thesuninstallinstallation procedure to install the initialization prograthus having the same
(predictable)proces ID

The resultis that many systems ended up using identical NFS file hantdeema in [45], de-
s cr i be deverylthes hoase thé street did have the same keys to the front dbar

3.6 Online Poker Exploit

Another good example of a programming error in the usage of a PRNG that led to crumbling of an
entire application is seen if#6]. The authors demonstrated an exploit of the shuffling alion

used in an online poker application byThe Planet Poker Internet cardroom
(http://www.planetpoker.con).

The authors analyzed the algorithm used in the application to shtiféedeckof cards before
each round of Texas Hold em Poker. The al gori
developed the algorithm as to show that indeed their algorithm is fair. Their published algorithm
follows inFigure5 FlawedDeck Shuffling AlgorithnThe code was implemented in the Pascal-pr

gramming languagpt7].

1 /I Initialize the deck of cards

2 for ctrin 1..52 do

3 cardsjctr] = ctr;

4 end

5

6 randomize; // initialize the PRNG based on system clock
7

8 /l Randomly rearrange each card
9 for ctrin 1.. 52 do

10 rnd = random (51) +1;

11 tmp = cards[rnd];

12 card s[rnd] = cardsfctr];

13 card s[ctr] =tmp;

14 end

Figure5 FlawedDeck Shuffling Algorithm

The authors showed bugs in the above algorithm that harm the equal distribution of the shu
fled deck of cardsBugs such as the fact that the current card would never be alloweldeto
swagpped withthe last card in the deck (ctr=52). This is due to the fact thdtin line 10 would
never getto the value of 52This is because th&ascadl mndom(n)returns a value between 0..{n
1). While this indeed harms the equal distribution of the shuffled deble, exploit that allowed
them to entirely break the application came froime PRNG usag®&Ve follow with an explanation
of this exploit.

First they observed that the number of permutat®in a deck of cards is equaluiode ¢
However the state of the PRNG used is 32 bits long, thus it hagonktates They reduced the
search space even more by observing treatdomizeinitializes the seed with the amount of nnll
seconds that passesince midnight This reduced the search space even furthegtdxr Tthu 1T &
¢ (number of milliseconds in a dayhe final nail in the coffin was their final exploit.

By synchronizing the clock of their attack machine and the Poker server they were able to
duce the attack space to a megertht 1. 7This is a trivial search space and after a couple of seconds
on a regular PC and after seeing just 5 cards in the round they were able to synchronize with the
PRNG. From here on now, the application was brokehesknew exactly which card every player
got.

The authors further gave recommendations on how to fix the algorithm by using a simpler alg
rithm, switching to a PRNG with a larger state and not ugiagystem clock as the seed.

16

http://www.planetpoker.com/

3.7 Linux Random NumberGenerator (LRNGAnalysis

Linux has gained popularity in the ldstw years in various verticalsjost notably inthe Super
Computer vertical it has a whooping share of 9[H]. In 2006 Reinman, Guttanan and Pinkas
[49] published a comprehensive analysis and a new attack on the forward security of the PRNG
used in the Linux kernéLRNG)We will briefly summarize the structusand algorithmof this gen-
erator as described in their papand their attack results.

The LRNG is an entropy based PRBOBEwhich is comprised of threasynchronous stagegl)
Various operating system entropy is gatbdrfrom operating system accessibsources, (2) the
entropy isaddedinto a TGFSkke pool using a mixing function, (3) the random bits are extracted
from the applicable random pools.

The internal state of the generator is kept in three poglamary, £condaryand urandom
whose sizes are 512, 128 and 128 bytes, respectikaltyopy collected in stage (1) is addaaly to
the primary pool and random bits are extracted from either the secondary or the urandom pool.
When necessary, entropy is added froine primary pool to the secondary and urandom pools.

In order to estimate when entropy is needed to be added, either to the primary pool or the
other two, the implementation holds an entropy estimation counter per each pbloése counters
hold how manybits that are considered random currentexist in the applicable pool.

/“\,/ \I T

=

/ — A [
(|
| e \\1 : :
1 1
keyboard | Secondary |
GTES I| Entropy Pool a'de-.ra'r_anfjmn
| . E A 125 Bytes E (blocking)
/ Primary
[Entropy Sources z_’ Entropy
| I Pool
y interrupts 512 byles
\ Urandom /dev/urandom
—1 - | S A ' Er}tég'g_zzo' E ™™ get_random_bytes
T - {mam-hlocking)

N

Figure6 LRNG Structuré G I 1 Sy FNBY | dzi K2NEQ LI LISND

Figure6 (taken from the LRNG pappt9] page 5 describes the flow and structure of the LRNG.
TheCstands for collection of entropy from the various entropy sources. Aktands for addition
of entropyto each of the poolsE stands for extraction of either entropy from the primary paol
extracting random bits using one of the applicable devidé®e dotted line represents a feedback
that occurs whenever entropy is extracted from a pool.

There are two devies for extracting random bits from the generator. One/dsv/random,
which is a blocking interface. If one tries to extract random bits from this device, while the entropy
estimation for its pool (the secondary pool)iisthe device would block until sidient entropy was
added from the primary poolAchieving a property where the random bits extracted from this
device should always be “good”, while potenti
the blocking nature of the device. The secorelvide is the/dev/urandomd e vi c e, whi ch
blocking device. This device would retdram its pool (the urandom pooBs many random bitas
the user wanted.The third interfacethat is used by the kernel code to extract random bits is the

17

get_random_bit§unction which also returns radom bits from the urandom pool but not by réa
ing from the/dev/urandomdevice.

The authors show an attack on the forward security of the LRNG with an overhead iof
most cases and an overhead ©f for all other cases. This sbig improvement over the brute
force attack that would need an overhead@f for the case of a 128 bytes pool.

Another contributionof the paper is noting a potential DoS attack in case a malicious user
would read excessive mdom bits from the/dev/randominterface. Furthermore, the paper shows
the problemof having this geerator used irsettings that havevery limited entropy sourcesuch
as the OpeANRT[5]] platform.

3.8 Windows Random Number Generator (WRNG&nalysis

According to[52] the Windows Operating System has a 90% market share; this brings the PRNG
implemented in the Windows operating system to be the mostduB&NG of all operating systems.
Unlike the LRNGséction3.7), whose source code is readily availathee Windows PRNG (WRNG)

is behind closed source.

In 2007Leo,Guttermanand Pinka$53] published a detailed analysis of the WRNG of Windows
2000 and Windows XP (with SP < 3) machines. They further showed attacks on the forward security
of the generator, which was fixed in Windows SIP354]. We will briefly summarize the structure
and algorithm of this generator and their attack results.

The WRNG is an entropy based PRNG, wilgek the algorithm specified FIPS1L86-2 appen-

dix 3.1[29] constuction with the use of SHA as the G functionThere is also use of RC4 when
getting entropy from the systenThe pseudocode as t aken f r onforthdinmnaut h
loop of theWRNG follows.

1 /[output Len bytes to Buffer

2 while (Len > 0) {

3 R =R XOR get next 20 rc4 bytes();

4 State = State XOR R;

5 T=SHA-106(State) ;

6 Buffer = Buffer.concat(T); /[concat denotes concatenation
7 R[0..4] = T[O..4]; /I copy 5 least significant bytes

8 State = State +R +1;

9 Len=Len i 20;

10 }

Figure7 WRNG Main Loog CryptGenRandom(Buffer, Len)

Theoutput of the generator, as can be seen in lirfke§, is20 bytesin size after the invocation
of the SHA1 function. We continue to loop until the buffer is filled viigmrandom outputs from
the SHA1 function output.

The functionget_next_20_rc4_bytess the function invoked in order to get 20 bytes of random
bytes that arefed to the generator. This function is implemented using 8 instances of an RC4
stream cipher operated in a rouagbin manner. The ciphers aneitialized (rekeyed) using system
entropy in asynchronousway in two situations: (a) at the beginning of thegaiithm, (b) if we
received 16K Bytes of data from this cipher instance.

The funct i pasdescribadifg3p foliovish m

I'if | output of RC4 stream | >= 16 Kbytes then refresh the state
while (RCA4[i]. accumulator >= 16834) {
RCA]i]. rekey (); I refresh with system entropy
RCA4[i].accumulator = 0;
i=(i+1) % 8;

}
result = RCA4Ji].prng_output(20);
RC4Ji].accumulator += 20;

O~NOUIRRWN PP

18

9 i=(i+1) % 8;

Figure8 get_next_20_rc4_bhytes()

The implementation uses various system entropy sources to refresh the RC4 instances. The
complete list of the entropy sources is availabletilh e a ut h.cEackh RChpekgyed rwith
entropy of up to3584bytes in a process that also involves utilizing a hash function and additional
cycles of RC4 ciphers to produce the actual RC4 key.

The state of the generatoris dictated by the two variable® and Stateand the states of the 8
RC4generators, which eacstate is 256 bytes long. Both variabl&and State,are 20 bytes in size,
so we can conclude that the state sise T (3 L @ ¢ Tt Yo 6. Qf

The authorsproposed attacks over the forward security and backward security of thiseimpl
mentation. Both attaks assume the attacker has knowledge of the state at a specific time. By
observing the application memory space Leo showed that we can (relatively easily) get the values
of: State, Rand the 8RC4nternal states. The paper also discusses why gettingtide is relatively
easy, mainly due to the fact thatinlike the LRNGthis generator is implemented purely in user
mode. We continue to briefly summarize these key findings.

Backward Securityobserving that (a) the entropy is refreshed only after thagmtor prodic-
esyPp @ Y Bytes, or 128KB of output and (b) the rest of the algorithm is deterministic leads to
the fact thatbetween RC4ekeyingthe generator hasio backward securityproperty what so ever.

Forward Securityadding to the above observationise factthat RC4 isiot a oneway function
and has no forward security propertieo showed that with an overhead of we can break the
forward security property of this generator. Moreovdre showed that if we allowourselves to
assume that we can get the valuesRénd Stateat some point in the past, we can get an attack of
O(1)operaions. This achievement @ie to the fact we only need to inveRC4

Attacks between rekeyingthe paper notes that the attacks ahe Forward and Backwaras
curity of the generator are only applicable betwe&tC4re-keying, since after this step the RC4
states are rdnitialized. At first this assumption seems harsh, however considering thia¢yiag
occurs every 128KB of outputig actually a serious flaw in the generatbtostly considering the
fact that, according totte paper this amount of random data is equivalent to 62200 SSLcon-
nections. Considering an average Windows user, this is certainly many connections th&b heed
performed before the rekeying process takes place.

19

4 Analysis Methods

In this section we introduce the general structure of our analysiseachprogramming&nguagean
guestion. We willalso use this section toutline common assumptions and comon techniques
that will be used throughout the analysis.

4.1 Notations/Jargon

The following are notations and general jargon that we will be using throughout the analysis:

1 Generator, PRNG-we will be using these terms interchangeably to refer to the analyzed ge
erator.

1 \Variant, flavor— all programming languages have more than one PRMilementation We
will refer to these alternatives as variants or flavors. In some languages eveartieegenea-
tor can have multiple settings that affect its security. We also refer to each setting as a different
genentor flavor, when applicable.

1 Code segments code and pseud@ode segments are designed as following:

1 printf(oHell o Worl dd¢);

1 Period, cyte length — we will use these two terms interchangeably to refer to the maximal
period that an analyzed generator has.
1 Whendiscussing bits in a bit arrdoy, b,.1,X Zothen theO indexed bit stands for the Isb hit

4.2 Assumptions

The following are@ssumptions that we make in all of our programming languages:

1 Architecture—we assume ouarchitectureis based on 32 bit architecture.

1 Operating Systems- our analysis covers the two most popular operating systems Microsoft
Windows[55] and Linuq56]. If there are differences between versions due to different enpl
mentation we will note when applicablén some languages, e.g., PHP, we decided to present
complete analysis only for the Linux platform; this due to the fact thast PHP deployments
happenon Linux platforms.

4.3 Common Analysis Structure

We will provide our analysis per each programming language using the following loose structure:

1 Introduction — each programming language will have an introduction section. In this introdu
tion section we provide background information for the analysis. Information such as the pop
larity of the programming language, the different PRNG implementatibasexist in this la-
guage, version information that relates to our analysis, scope of our analysis and appkeable r
sources.Here we will also state the specifics of how the analysis was conducted in terms of
source code accessibility.

Per each flavor dPRNG that exisin the programming language we provide the following:

1 Introduction —miscellaneousnd introductoryinformation that relates to this specific flavor.

1 Design Space here we discuss aspects that relate to software design of this implerhenta
We specify the source files, header files, class files, functions and overall design that #e impl
mentation utilizes. Here we also explain the API that a developer can use to interact with this
generator.

1 Under the Hood- concrete implementation detils, including the PRNG properties of thenge
erator. Here we will provide detailed explanateof the algorithm used, including pseudo code
in most programming languages. Each programming language wanichally contain the fd-

20

lowing information in thissection: What is the theoretical PRG behind this implementation? |
there a way for the user to set the seelli?hat is the default seed implementation (if there is
any)?Whatis the size of the state®/hatis the size of the seed®hat is the period of tis gen-
erator? Is this generator entropy based?

1 Security Properties Analysisthis section holds a detailed analysis of the security of this gene
ator. We follow the security requirements explained2r2 that are: pseuderandomness, fo
ward security and backward securityere we will describe the various attadkst we found in
the applicablemplementation Where applicable we will also cover the security of the default
seed implementation and address the security of the seeding operasanwhole

4.4 Attack Vectorsand Attack Assumptions

Analyzing a programming language API without usisgecific applicabn in mind or an applia-

tion as anattack target can be hard. If we were to giver@itacker too much strength themost

generatorswould beeasily broken, e.g., since most generator run in user space an attacker that has

access to the machine can almadtvays access the concrete state, which would have made our
attacks trivial. The following are the attack vectors and attacker strength assumptions we used:

1 Cipher text attacks- we only assume our attacker has access to outputs (or sometimes part of
the output) of the generatorWe do not allow our attacker to have access to the machine, nor
the ability to change the state or parameters of the generator (although where applicable we
will state weakness if thse parameters are easily changed by an attackéth access to the
machine).

1 Spacetime tradeoff attacks— spacetime tradeoff is a technique that allows an attacker to
balance between the space and the time of her attack. Gutterman and Malkhi provide a general
scheme for the use of spad¢ine tradeoffin PRNGin [42]. We will not explicitly mention how
to use this technique in ouattackseven in places it can be utilized

1 Consecutive outputs- some attacks require getting consecutive outputs from the generator.
most attacks the consecutive outputs assumptaanbe replaced with an assumption that we
can knowthe applicable positoninthe andom stream. We not eeryt hat
harsh considering that therare manyapplicatiors where getting consecutive outpuis reb-
tively easy.

1 Time based attacks- many seed implementations use time (or clock) values in order to seed
the generator in their default seed implementation. Wellvgee that this type of seedingas
low entropy under realistic assumptismegardingthe serverup time, or other relevant pana-
eters.

1 Solving linear guations—i N s ome att acks thwegeneratorautput giveslug f a c
linearequati ons over tFbhrexagpenseerthe atmak descrited 26l

21

5 C

5.1 Introduction

There are many PRNG implementations for C. We will concentrate on the PRNGs that are available
in the standard C language specification, popular compilers and standard runtime implementations.
We will discuss the Microsoft C runtim@l$VCR)I[64] implementation and the gnu C librarglipc)

[58] which is popular on *NIX platforms.

Within these runtime implementations, evwill discuss the 1ISO ANStand() family that is
availableon Windows and *NIX platformasnd other families: theBSD[59] random()and SVID[{60]
drand48()traditional UNIX PRNG familieghe latterare only available ofNIX platforms asthey
aren't available with the default Microsoft runtim@nWindows platforms, as part of the security
enhancement in the CRT, there is a different flavorasfd() calledrand_s()[61]. This variant will
also be coverethere.

We note that there are many othed™ party librariesthat implemented other PRN§3such as
implementations thatfollow the algorithms in2]. These are out of the scope of this analygg]

Givesa very good review on the algorithms presenteddh as fa as randomness and cycle length
of these generators.

glibc specific scopeThere are several implementation variants ghbc, one of which is the
reentrant functionsthat as a conventiomavetheir function names end with ar suffix (as defined
in the FOSIX standarfb3]). This analysis only covers the regular, #flmead safe functionsThe
main differenceof these variantsistha&t he st ate i sn’t preserved in
randomfunctions but instead provided by the user during invocation of the functitmwever the
basic PRNG algorithm remains the same.

Importance of C generatorsC is still one of the most populnguagesised in the software
industry; especially in a perforance demanding environment, such as embedded devices and real
time applications. C is a major building block in modamgramminglanguags and technologies:
the Java JVM is built partly in C, so dysnCMi cr
and so on and so forth. Some of these languages still use the generators that are available in C,
either as fallbacks i n cas sthedefaut genevatortdugent s c a |

Version information:Theglibcversion that was stdied wasglibc-2.5 dated 29/9/2006 The M-
crosoft CRTimplementation version that was studied was the one supplied Wigual Studio 2005
[64].

Structure of analysisthe structure we use for this analggs a bit different than the one wese
to coverother languagesSincethe dependence on platforrm Cis stronger than irother chapters,
we will analyze the Windows and the *NIX variants as independent generator implementations.

ANSI C Standard PRNG specificatiGnis a standardized programming language; it wasdstan
ardized in 1989 red ratified as ANSI X3.18989"Programming Language {65,66]. According to
the Rationale documeniit7], the Committee also noted the requirement of having a pseudo ra
dom number generator implemented. They further claidthat the function should generate the
best randm sequence possible in that implementation (meaning the implementation of ANSI C)
and therefore mandated no standard algorithideverthelessthey recognized the valuef being
able to generate the same pseudandom sequence in different implementationand sothey
published as an example in the Standard an algorithm that generates the same pse&widon
sequence in any conforming implemtation given the same seeftan be seen ifi67], 4.10.2, p
101) The algorithm is a portable one and is based on the LCG algof&hhi). Section 7.20.2 in
the Standard requires the following:

22

1. rand()function— (a) The rand function computes a sequence of psewhmlom integers
in the range 0 to RAND_MAX, (b) the value tke RAND_MAX macro shall &teleast
32767 € p).

2. srand()function - The srandfunction uses the argument as a seed for a new sequence of
pseuderandom numbers to be returned by subsequent callsand. If srand is then called
with the same seed Vae, the sequence of pseudandom numbers shall be repeated. If
randis called before any calls svandhave been made, the same sequence shall be gene
ated as whersrandis first called with a seed value bf

5.2 Microsoft CRT (MSVCRT) Generators

5.2.1 (ANSIC)C Standard Builtin Generators (rand() family)
http://msdn.microsoft.com/enus/library/398ax69y(VS.71).aspx

5.2.1.1 Design Space

APl as required by AN, the core functions in the CRT that relate to generating pseudo random
numbers arerand() andsrand(used to setting the seed) functions.

Adaptation from BASICaccording to the function comment arandthe algorithm is adapted
from the BASIC random number generator.

The functions are declared in tistdlib.hheader file and implemented in thand.csource file.

5.2.1.2 Under the Hood

Thestate/seed of the generator is held in a variable nameloldrand of type unsigned longEach
thread has its own state variable, which is saved in thetperad data structure namedtiddata.
_tiddata is astruct which is declared imtdll.h (the include file for DLL/MuHihread). This struct
also holds varioushread relatedinformation such as thehread-id, thread handle and various
other data.

The theoretical PRNG behinditisLCGt he LCG’s i mpl ementati on
pseudacode:

1 seed =seed A 214013 + 2531011;
2 output = (seed >> 16) & Ox7fff; /loutput is truncated to output
maximum of 32767

Therecurrenceformula of this LCG is:

Xn+1=(aAX, + c)mod & ,n>=0 |,
a=(214013) 10
Cc= (2531011) 10
m= ¢

Implicit modulus parameter. m is chosen as a powef 2, snce the implementation is done
with 32 bit unsigned arithmetic the addition of two unsigned numbers is performed wittodulo
of ¢
Output truncation: the output of the generatoisbits 163 0 of t he gener ator ’
Period the generator has the mamal LCGeriod of (the size of m). This is due to the fact
that the parameters chosen satisfy the requirements outlined.fh 1
1. mis chosen as a powef @.
2. candm are relative primes as theCDs 1.
3. Sncemis a power of 2, its prime factors aPefollowing this(a-1) =214012 is divisible by all
prime factors of m

23

http://msdn.microsoft.com/en-us/library/398ax69y(VS.71).aspx

4. Both mand(a-1) are a multiple of 4.

State the state size isffectively31 bits This is due to the fact that the MSb bit of the state is
never used. We can see that duristgpping of the generatothe MSb bit of the state only affects
the MSb of the state, and because we dornri-t us
bution to our generator.

Seed there is an option to set a seed externally by invoking grend function. The function
setsthe generatois statet o0 b e t he f u n\Wdnote that the fagtwigch folwstfrom
the paragraph abovehat only 31bits of the given seed affect the generatas,not documented

Default seed implementationthe default seed is initialized tbe the constantl. This can be
seen in the initialization process of tiptd structure, whenever a new thread is initialized, in the
source filetidtable.cline 482, in the function initptd.

Entropy usethis implementationR 2 S ZagdQ@uily entropy to the generator.

5.2.1.3 Properties Analysis

5.2.1.3.1 Pseuderandomness

Assuming we knowthe implenentation is based omand(),i.e., the generatoris LCGvith known
parameters.

Known Ciphettext attack we can mount a similar attack to the ormutlined in details
in6.3.3.1land we’ | | gi v e h-€Theeattaoknnill yequae ub to find dut tlsekméssing h
bits that were truncated before the output was generated. Assuming that a common implament
tion would requireall the 15 output bits from the gererator, we ' | | find the unk
bits of the seed by enumeration and validation

Number of outputs needed:given an outputafter seeinganother verification output we will
havep ¢ O¢ p e olegd guesses for the internal statéf.another outputwill be used to
verify the correctst at e we’' pl ¢ha®e @nrelpy ¢ valid options So, we
can conclude thatwhen usingtwo more outputs for validation, we canfind the real state

AssumingweR2 Yy QiU 1y 26 GKI GWANI yRioe thhatdzawd[6Batn’' t n
tack in order to try and find out the LCG parameters (and conclude that this is in fact an LCG). This is
due to the fact that the output is never the entire statié.we get consecutives outputsnaasy
distinguisher is simply to mount the attack abow@aad then verify with another output

5.2.1.3.2 Backward Security
None (not entropy based).

5.2.1.3.3 Forward Security

None; since it uses LCG, with knowledge of the current state we can simply reverse the LCG and get
to the previous states.

5.2.1.3.4 Default Seed Weakness

The CRTimpleennt ati on actually doesn’t even try to p
the user won’t set the seed herself, t he con:
remotely secure.

24

5.2.2 rand_s()
http://msdn.microsoft.com/erus/library/sxtz2fa8(VS.80).aspx

5.2.2.1 Design Space

Part of the effors of making the CRT more secuteat is described if69], a new convention of
function names was introduced. This convention was to add a sudfix* sec ur e onsthator f
are now more securéA good example is the nestrcpy_sunction which is a secure counterpart of
the strcpyCRT function. This new furan takes another parameter, which is the size of the buffer,
So it can determine whether a buffer overrun will ocur

rand_sis another one of these new functions, which is a secure alternative for theaDR({)
functionanalyzed irb.2.1 Therand_simplementation is in theand_s.csource file and declared in
stdlib.h

In order to use this variant one should define, priorth@ inclusion statement ofand_s,the
constant_ CRT_RAND. $his implementation is completely separate than the oneawfd() and
srand() thus it doesn't use the seed set bsand() nor does it affect the state aaind()

Applicable Windows VersionsAccording to documentatiom [61] this variant only works on
Windows XP and lateit uses theRtlGenRandonfunction, which is defined iNTSecAPIl.And
available inADVAPI32.DLib order to invoke theVRNG(3.8). The implementation oRtIGenRa-
dom is exported asSystemFunction0361 the DLL above. On Windows XP machines and later
CryptGenRandormvokesRtlIGenRandormaccording td70] this was done in order for callers that
do not want to loadhe entire CryptoAPto still be able to call theVRNG

The APDf rand_sis different thanthe one inrand(}

1 errno_t rand_s(unsigned int* randomValue);

The function receives an int pointer, in which the next random integer will be placed. According to
the documentation the functionproduces a random number in the rangdXUINT_ MAX
(TWEALALELELD).

Misleading MSDN Documentationthere is an inaccurate statemeim [69]. According td71]
the .NET Framework equivalent @fnd_sis System::Randoralass. From our analysis of ‘Nif
the 7.2 chapter we know that the generator implemented i8ystem.Randond o e s n'the u s e
WRNQenerator.

5.2.2.2 Under the Hood

The function implementatiofust invokes the function RtiIGenRandomequesting radom value of
32 bit (size of unsignenhteger). As of such itsanalysis is identical to the ongescribedin 3.8.

25

http://msdn.microsoft.com/en-us/library/sxtz2fa8(VS.80).aspx

5.3 *NIX glibc Generators

5.3.1 Introduction

There are many random number generators that are available imlibelibrary. All generators are
declared in thestdlib.h header file. The resolving of different algoritenis based on constants
defined by the user.

5.3.2 (ANSIC)C Standard Builtin Generatas (rand() family)
http://www.gnu.org/s/libc/manual/ntml node/ISGRandom.html#S&Random

5.3.2.1 Design Space

APl:as required by AN&I, the core functions amand() andsrand(used to setting the seed).

The functions are declared stdlib.hand implemented irmrand.cand random.c(srand. The -
plementation forrand() invokes the BSD varianhndom()function andsrand()is mapped to the
srandomfunction.

Following thisthe reader in encouraged to see the analysis of 8D random(unctions fani
ly in the following section (sectioB.4).

26

http://www.gnu.org/s/libc/manual/html_node/ISO-Random.html#ISO-Random

5.4 BSD C Generators (random@amily)
http://www.gnu.org/s/libc/manual/html node/BSERandom.html

5.4.1 Introduction

The BSD style generators are available inglhiec library as a mean of compatibility for BSD like
systems.

Importance of BSD generator$hhe same generators are also available in the ¥2&X Opeta
ing System, as it is based on BSD. This makes these variants even more important considering the
recent popularity of Apple based products, which all ofrthare built on topof some version of the
Mac-OS X. E.g., the popular iPhone (and now iPad) device are built on top of an OS, whiclt-is repor
edly derived from Ma®©S H72].

5.4.2 Design Space

The implementatiorof the randomfunctions family resides irmandom.csource file and defined in
stdlib.h The implementations ofandom(), srandonand other family functionsnvokethe imple-
mentation ofrandom_r() srandom_r()and other corresponding functions.

Output size therandom()method returns &1 bit value.

The implementation has two basic modes of operation: (1L&&mplementation. (2) Annn-
plementation based o\dditive feedback generato(2.4.6) with 4 different polynomials. We will
use the acronym\FGduringthis analysis to indicate the latter.

The state array can be specified by the user usingrtitgtate function. This function allows the
user to specify hedesired size of state array and seed. Consequently this will determine tle pol
nomial used for the AF@nd whetherthe AFG or LCG is uséthere is another API function called
setstatethat is used to reset the state array.

For further details regardintpe API the reader is encouraged to read tine documentationin
[73].

Apart from these functions the operation API is similar to the one ofrémel functions family.
Namely, there's arandomfunction n order to initialize the seed andindom function tha is used
for steppingthe PRNG.

State Array:Each entry in the state pool information array is iateger. The implementation
uses several pointers in order to manipulate this state array 5s¢8.1and5.4.4.1for details.

Generator types:ithere are 5 types of generators used. The choice between the generators is
based upon the amount of information in the state array, i.e., ldv@gth of the state arrayas po-
vided ininitState This can be seen in the next summary table:

\ Implementation (trinomial) [Input State|(Bytes)

GO | LCG (N/A) 8 < |state]

Gl |AFG® w p) 32 < | state]
G2 |AFG® w p) 64 < | state]
G3 | AFG ¢ o) MHY X padl g
G4 | AFG@® W p) 256 < |*st at e

* - a state size that is bigger than 256 is truncated to 256.
The actual code that defines these implementations can be se&f.Bhl All implementations are
implemented in therandom_r()function, which is implemented in theandom_r.csource file. The
decision which implementation to use is controlled via thad_typevariable.

27

http://www.gnu.org/s/libc/manual/html_node/BSD-Random.html

| f the user doesn’ t defaltgenesatoichosen acordingdatieeed h er s
fault initialization used, which leads to tli&3implementation.

The analysis continues in the following structure: we first analyzeGbeariant andthen can-
tinue to analyze the variantS1-G4asthey all share the same algorithm with different parameters.

543 GO:LCG

5.4.3.1 Under the Hood

The implementation uses the firslementof the state array as the LCGtaite, meaning annteger
value of32 bits
Thetheoretical PRNG behind it is LCtBe recursionformula of this LCG is:

Xne1i=(a*Xn + ¢c)mod &,n >= 0
a=(1103515245) 1o
C:(12345) 10
m= ¢

The actual code of the implementation can be seehlir8.1

Resemblance to ANSI example algorithmthis implementation and parameters are thap
rameters used in the algorithm example in the ANSI C Standard. The only difference is that this
implemertation allowsthe output of up to 31 bits, instead of the 16 bits used in the Standard.

Period the generator has thenaximal LCQeriod of (the size of m). This is due to the fact
that the parameters chosen satisfy the requirements outlined.h 1

State the state size i81 bitslong, due to the moduisused.

Seed:there is an option to set a seed externally by invokinggrendomfunction. The function
simply sets the statetobdite s eed supplied. It first makes s
it is equal to 0, the implementation sets the seed to be equdl,tas specified in the ANSIStad-
ard.

Default seed implementationas specified in the ANSI Standard, the dafilt seed is equal to
1.

Entropy usethis implementationR 2 S ZagdQ@ury entropy to the generator.

5.4.3.2 Properties Analysis

5.4.3.2.1 Pseuderandomness

Unl i ke ot her LCG i mgoVesdie this pageiherenthe outpht aftthe geaer v e
tor is simply the sta of the LCG. This leads to the followattacks
Assuming we knovthe implementation is based amndom() i.e.,the generatoris LCGvith known
parameters.

Known Cipheittext attack: we noticethat if we can get our hands am complete output of the
state, meaning the application Wirequest an output of 31 bits, theour attack is complete and we
have the state in our handét we don’ t get a complete texut put
attack similar to the one in MSRT(5.2.1.3.). We wi | | al ways guess the
get as output as the bits we need tuessin order to get to the stateand use anotheoutput(s)
for validation

ldadzYAy3d 6S R2y Qi |y 2lowe gekehaighdNdpyfsRo2éY'@ 0 & @ dza S
we can mount the attack proposed IBoyar[68] in order to find outif the generator i9.CG with
the known parametersHowever wesince we just want to verify thahe generator is LCG with
given parameterswe can simplylo it usingtwo consecutive outputs

28

5.4.3.2.2 Backward Security
None (not entropy based).

5.4.3.2.3 Forward Security

None; since it uses LO@th knowledge of the current state we can simply reverse the LCG and get
to the previous states.

5.4.4 G1-G4: AFG

5.4.4.1 Under the Hood

The theoretical PRNG behind is ARGe algorithm uses thadditive number generatoin [1] pp.
26-28, Knuthdiscusssthese types of generatori® detail The simplified recursion function of the
algorithm is:

Xn:(x n- deg + X n- sep) mOd c y n >= 0

Where deg is the degree of the polynomial used asdpis the separation between thavo
lower order of coefficients of the trinomial, meaning the distance betwg#nandrptr as seen in
Figurel0 AFG AlgorithmFor each of the generators, GG4, we get the following:

deg sep
Gl w p) 7 3
G2 w pl) 15 1
G3 e)) 31 3
G4 W p) 63 1

Figure9 deg, sep assignment per each flavor

The algorithmmplementationcanbe seen in the following diagram:
Shift

|

rptr

fptr
 p
End_ptr
—_—

truncate
Feedback

Shift

v

" Feedback l
Figure1l0 AFG AlgorithnDiagram
Implementation details:similar to the implementation i7.2 (C#),the implementation uses an
array of (signed)integers The algorithm keeps three pointers to the array: front pointer, rear

indino
\

End_ptr
—

29

pointer and an end pointerfiftr, rptr and end_ptraccordingly) fptr and rptr are positioned in a
distanceof sepbetween them.The actual code of the algorithm can be reviewed1r3.1

Stepping the generatorin eachiteration of the generatorfptr and rptr and summed, the
summed product is placed whefptr points to, to create a feedback. Then the two pointers éacr
ment by one, i.e., the register shifted Incase either of the two pointers reaches the end of the
array, by reaching the end pointer, it wrapsand to the start of the array.

Output reduction:the function returns the summed product reduced3a bitsby dwucking the
least significant bit

State:the state of the generator is the array oitegers, which depends on which generator is
used. Thestate size (|state|) of the generatoris®™ g} -<aMnich means 7*32=224 bits,

15*32=480 bits, 31*32=992 bite;nd 6332=2016 bits for generators G1, G2, GBd Gdrespec-

tively.
Inaccuracy of code documentation regardipgriod length: we note that the code documeat
tion states that thealgorithm reacheshe periodlength of Q 'Q2Q¢ p . Furthermore, it states

that surely theperiodf or G1 iasxh ¢t ps mayl.dccording to the literature we found
the actualperiod, when a modulis of the power of 2 is used and the generating polynomial ispri
itive, is asfollows.

Period since all polynomials used are primitive we know that the least significant bit achieves
the maximalperiod, which isg® ¥ p. This means that our generator achiewadeastthis cycle
length. As noted b¥nuth in p 27 iff1] the period of the entire algorithm is bigger than this since
the summation also affects the high order bits (since there is a carry for the summation). According
to [23] the cycleis Yoz Wal , whereM is the power of 2 used in the modulukse., we can
conclude thathe periodfor G3, G4 is z e z ¢ p respectively.

Entropy use this implementatiorR 2 S ZagdQuiy entropy to the generator.

Seed: there is an option to set a seed externally by invoking eigrandomor initstate. init-
state initializes the data structureand invokessrandomto perform the actual initializationobic.

We note that a user can also pass a complete state array @&tggate function. The seed is a
singleunsigned integerHere, as in GO, a seed value of 0 is not allowed and 1 is used instead.

Default seed the default seed is equal tb. The nitial state array is populated from this value
as following

Initial state generation procedurdrom the given seed: in order to populate the state array the
implementation uses a twstep procedure: (1) invokes an LCG generator on the given seed and fills
the entire state array, (2ryclesthe entire state arraylO timesby invoking therandom function.

This can be seen in the following pseuctme:

state[0] = seed;

1

2 fori=1..deg do

3 I ® pPOUAREQ h & ™

4 state[i] = (16807 * state[i - 1]) % 2147483647,
5 end

6

7 fori=0..deg*10 do

8 random() ;

9 end

Figurell State Intialization Code(srandomfunction)
We note that the actual code al so makeThe sur e
actual source code can be viewedlih.3.1

5.4.4.2 Properties Analysis

5.4.4.2.1 Pseuderandomness

30

As mentioned aboveof the sake of thesimplicity in theanalysis of pseudoandomness we will
consider that the generator used 33 becausat is the default generator that most users would
use.The analysis is edg extended to other generatorigy using the different generators™ param
ters.

Assuming we knw the implementation is based orandom G1-G4: this will give us the info
mation of the algorithm used for the generator and its parameters.

Brute Forcea brute force attack of the state would require searching a space of, which is
not a feasiblesearch spaceBy allowing ourselves to get outputs from the generator, we thet
followingimprovedattack.

Known ciphertext attack: note that even aftergetting 31 consecutive outputfrom the gene-
ator, we still have options for the unknown LIS of the 31 words of the statthat were trun-
cated from the outputTo findtres e bi t s, we [&4]dttdck td loelal treewstateK | e i n’ s

Reminding ourselves that our series is:

@ @ @ a€eQ

An equivalent representation is:
® ® O aéQ

Writing out internal state at step as:
®w T12Z0 ¢z0 O

Whereb r epr es ent § ishhit T andd 2s. 18 1Sb bit (bit 0), whichwéhat we aretrying
to find.

Extracting ||. : Observing howd advances: if|. and |. are both 1, then we have a carry
from this LSbto 0 . This means that whewe see from our outputghat 0 0 0
p & £ 'Q, we can surely conclude that

6 pp p.

Note that both equations are linear equations in the state bits, for example if we know in this way
that 6 ph5 pO 6 § 6 pd p.

If . or |. , we don’t hadfbe aldcarr yif Qtwe gan
only know that
**) 6 Tord M.
Note that, like in the previous case, we are actually getting constraints on the state bits, for exa
ple if we gethatd 1€ 10 mo 6 méEIOG $§ O U

Klein follows and shows that we waluheed a minimum of extra 38.2dutputs. This is due to
the fact that beyond the initial 31 outputs the distribution of tluarry bitis %4:%4, thus by applying
the binary entropy function we get:

Pac@ o Daep O oemeh0s mE i 000t

o P
T

—

Meaning we would need 31+31/0.859.27 outputs. However this only holds if the variable
were independent this is not the case here, soewvould need some more outputs (equations) in
order to have all the information téind 6 . Kleinarguesthat we would need 800 outputs in
order to get to a single solutiorBo we can conclude that if we were to g80-100 consecutive
outputs, we would be able toeconstruct the entire state

31

After showingin the discussion abovihat 80-100 outputs should beenough to get the state
(information wise)we ’ | | nhowwescén@eto the state from those outputs. We have two
alternatives:

1. Use a brute force approach over tite space (of the missinB, bits) and for eachoption
verify thatthe generatorindeed produces the 80-100 real outputsWe know from then-
formation theory reasoning above that only one such option will pass this validation.

2. A more efficient way is to first solve the linear equatiamg*) above and get all the cand
datesfor6 8 6 that fulfill the (*) constraints Following this, we will eliminate false sel
tions using the constraints (**) above.

| &adzYAy3 ¢ StheRndplérientatipnisbased armandom We could just try and mount
the attack above in order tdistinguishthis generator's outputrom a random output

5.4.4.2.2 Backward Security
None (not entropy based).

5.4.4.2.3 Forward Security

None-if we have the state in our hands, we can reconstruct the subtracteqpragons in order to
get to a previous state.

5.4.4.3 Seed Weakness

State initialization weaknesswe note that the procedure in the initialization process is completely
reversible. If we managed to extract the state information udimg attack outlinedabove (se-

tion 5.4.4.2.) we are able to get to the initial seed by reversing the initialization process. This, by
itself, can lead to even greater exposer, in case thelsssupposed to be secret (as seeds tend to
be). Klein mentioned this in his attack that by reversing to the seed from the revealed state, the
attacker can have a coarse indication as to the amount of DNS outgoing queries sent.

Brute force the seed is oly a 32 bit intege before the warm up phasthat expends it to 31
words), so if we get an output andre know the number of output iterations since initialization we
can mount abrute forceattackthat will use this output for validatiorNote that here ve need to
know how many timethe generator was stepped, as opposed to the attack above that could use
any 100 consecutive outputs

Default seed weaknesghe default seed is constant, thus has no entropy what so ever.

32

5.5 SVID C Generators (rand48() family)
http://www.gnu.org/s/libc/manual/html node/SVIERandom.html

5.5.1 Introduction

This family of functions is intended for compatibility with the SVID stanfiégBd As ithame sug-
gests these functions use 48 bits of state size.

5.5.2 Design Space

There are several flavors of functions for the caller to choose from. The functions differ mainly by
the way the random bits are returned, e.g.,udie, long etc.

Two distinct types of functions exist: one that generates output from a global state of the ge
erator and another that allows the user to explicitly pass the entire state of the generator. All these
variants use the same generator algorith

API:the various API functions fgenerating randonvalues are:

1. drand48—Returns a nomegative, double floating point valie T8tp8t .

erand48- Same as the above, only allows the user to specify the complete state.
2. Irand48—Returns a nomegative, long integein i

nrand48— Same as the above, only allows the user to specify the state.

3. mrand48—Returns a signed, long integer ¢ It
jrand48— Same as the above, only allows the user to specify the state.
Fa further details the reader is encouraged to refer to the documentairof60].

Source files:All of the above functions reside in separate implementation files with tlee fil
name as the name of the function, e.g., drand48 residekamd48.c The actual implementation of
the generator resides idrand48iter.c source file and this was used as the source for our analysis.
The main function is named accordinglydrand48_itera¢ — this is an inner function which is not
exported to the user.

Likein the BSD variant®.4) there are alsaeentrantfunction variantshat end with the_r suf-
fix. Their implementation is not covered explicitly in this analysis as they share the same generator
algorithm.

Initialization: there are several functions that can be used in order to set/initialize the gener
tor. The functions differ from one anothdary the amount of control the user has in initializing the
generator and consequently the amount of information the user has to supply for the initialization
process. Below is a quick summary of the various initialization functions.

1. srand48(long int seedal) —seedsthe generator. Receives a 32 bits seed value.

2. seed48(unsigned short int seed[3Pseeds the generator allowing setting the entire 48 bits

of the state.

3. lcong48(unsigned short int param[7hal | ows compl ete contr ol

and parameters. We note that this level of control, although good if one wants &nére-
ly different configuration for the algorithntan cause abuse, since tagorithmparameters
need to follow strict requirements to guarantee adequate randomnessadind period.

Initializers source filesAll of the above functions reside in separate implementation files (C
files) with the filename as the name of the function.

5.5.3 Under the Hood

State structure:the implementation uses threshorts(2 Bytes) in order toepresent the genax-
tor's state. The structure used in the various functiondrend48_data which is defined istdlib.h.

33

http://www.gnu.org/s/libc/manual/html_node/SVID-Random.html

This structure holds the current state, previous state and various parameters of the generator. The
structure’s source code can Been in11.3.2
The theoretical PRNG behinditisLCGt he L CG’ s’ soorgelcaeng nt at i on

X = (uint64_t) xsubi[2] << 32 | (uint32_t) xsubi[1] << 16 | xsubi[O];

result = X * buffer -> a+ buffer ->_ ¢

xsubi[0] = result & Oxffff;
xsubi[1] = (result >> 16) & Oxffff;
xsubi[2] = (result >> 32) & Oxffff;
Figurel12 Rand48 Algorithm Code
xsubi[] is the array that holds the sta information for the generator. The LCG formula is-pe

formed as usual witiXas the variable that holds the state. The translation of the array state to X is:

abhw N =

IS
3
I
3
@
0
W
=3

=

o

X

0]

0
s'zliansx

0]
o[zlignsx
S'[tlignsx

(0]
o[tlansx
stfolignsx |+

(0]
Tlolignsx |+~
o[plignsx |o

Figure13 Diagram of Translation from xdu Array to theState Variable X

Therecursionformula of this LCG is:

@ M waéQh &
a=(25214903917) 1o
c= (11) 10
m=2 4

Parameters choicethis choice of (a, ¢, m) guarantee a LCG witteaimalperiod.

Output truncation: the output of the LCG implementation depends on which function from the
APl we chose to use. In order to simplify the analysis, we will consider only the function of
I[rand48/nrand48that returns 31 bitswhich represent an unsigned integer. The output tieate-
turned is the 31 MSB bits of the state. This can be seen in the implementsdiosub[0] which
holds the LSB bitsofthe stee , | s n’ t r e Thiscan belseen i the follewing diagram.

32

St[glignsx | @
0}
[zhgnsx |&
o[zhansx |5
@
thgnsx |+
tlignsx |°

Entropy use this implementatiorR 2 S ZagdQuiy entropy to the PRNG.

Period the implementation reaches themaximal periof (size of m).

State:the state size i48 bits

Seed there is an option to set the seed externally. Thedsetting alternatives ftdw.

1. srand48- Using this function we can sup@y bitsseed The initialization takes the 32 bits
supplied and sets the 32 MSB bits of the state. The 16 LSB bits of the state are sehto a
stant of 0x330EThe resulting state is:

34

48 47 32 31 16 15

(¢}
0
2€p99!
D
9Tpaas
STpaa:
(¢}
Opaas
[
=
o
o
-
=
o
o
o
o
=
=
=
o

Figurel4 TheStateafter Initialization Using srand48

2. seed48- Using this function the user can supply 48 bits of seed which will be translated to

the initial state of the generator.

3. lcong48- Using this function the user can control all the properties of the generator: she

can set the initial state and control the valuesc@inda of the LCG.

Default seed implementationthere isn't any default seed Following thiscalling any of the
functions of this generator without setting the seed would result in the returned sequenceQas if
was the initial seed, meaning the fixed value of 0. From a developer point of viedettisson has a
disadvantageas it burdens thaleveloper(wh o i s nnowledgehble anythe disadvantages of
using a weak seed) with the responsibility of giving a strong enough seed to the generator.

5.5.4 Properties Analysis

Since this implementation is identical to one that we covere®.Bithe reader is encouraged to
view the analysis carried there. The only dif
default seed, thus the attack heme. the seed pr o

35

6 Java

6.1 Introduction

The following details were extracted from Java $B#ftware Development Kigjersion @&l [76]
dated 29/3/2007

There are3 major flavors of PRNG implementations in the JDK (Java Development Kit). Two of
which, Math.Randomandjava.util. Randomare the same implementation with a different API. The
third one,java.security.SecureRandpm a complicated implementation, desight be the secure
PRNG to be used in security sensitive applicatidhss flavor also has several modes of operation,
which are configuration and operating systel®pendent

6.2 Math.Random

http://download.oracle.com/javase/6/docs/api/java/lang/Math.html

6.2.1 DesignSpace
API:Math.Random has a public method calleshdom()whose implementation follows

1 if randomNumb erGenerator == null) initRNG();
2 return randomNumberGenerator.nextDouble();

Figure15 Math.Random random method code
The methodreturns adouble value with a positive sign, greater than or equabto and less than
1.0 . Returned values are chosgseudo randomlyvith (approximately) uniform distribution from
that range(from API doc).

The class holds a private stafava.util. Randonobject namedrandomNumberGeneratorThis
object is initialized on the first call sandom() The initialization is donevith the default seed,
meaning calling the default constructaf java.util.Random (See analysis of java.util.Random
in 6.3.3for default seedl

Thisrandom()method is only a wrapper methdor the java.util. Random.nextDoublef)ethod.
Given this fact we will not discuss the PRNG issues for this flavor, sincevieisd in details in the
next section(java.util. Random

6.3 java.util.Random

http://download-linw.oracle.com/javase/6/docs/api/java/security/SecureRandom.html

6.3.1 DesignSpace

The analysis is based on version 1.4jaeé.util. Random
TheAPIof java.util.Randoms comprised othe followingmethods

synchronized public void setSeed(long seed) { ... }
protected int next (int bits) { ... }
public void nextBytes(byte[] bytes) { ... }
public int nextint() { ... }
public int nextint(int n) { ... }
public long nextLong() { ... }
public boolean nextBoolean() { ... }
public float nextFloat() { ... }
public double nextDouble() { . -}
0 synchronized public double nextGaussian() { ... }

POO~NOUOIARWNE

Figurel6java.util. Random API methods
All the methods finally invoke the mamext(int bits)method whichstepsthe generator

36

http://download.oracle.com/javase/6/docs/api/java/lang/Math.html
http://download-llnw.oracle.com/javase/6/docs/api/java/security/SecureRandom.html

6.3.2 Under the Hood

The theoreticalPRNG behind it is the LCG PRN®re specifically it uses LCG's implementation as
introduced in[1], which was also analyz&uthe rand48functions family (see sectidnb).
TheJavaLCG implementationcodeis as bllows:

1 protected int next(int bits) {
2 seed = (seed * OX6DEECEG66DL + OxBL) & ((1L << 48) - 1)
3 r eturn (int)(seed >>> (48 - hits))
4

TherecursionLCG formula is:

Xne1=(a*Xn, + ¢c)mod &,n>=0 |,

a= (25214903917) 10
c= (11) 10
m = 48

Parameters choicethis choice of (a, cmn) guaranteean LCG with anaximalcycle as shown
in5.5.3

m: m is chosen as a power of this means theimplementation can be with the '&' operator,
thus gaining performance-dowever, as described ii] this results in ashorter cycle of the low
order bits of the statdhan of the state as a whol@robably due to this, thenplementerschose to
take only the upper 48 bits.

The output of the generatoiis truncated by shifting the state right (unsigned shift >3) 48
bits) bits, wherebits is the amount of bits requested by the calling method. E.g., the metiexd
tint invokesnext(32)in orderto get an integer value.

Entropy useThis implementatiorR 2 S Zagd@ny entropy to the PRNG.

Period the implementation reaches the maximafcle of theLCG2* (the size ofn).

State: The state size of the PRNGI&bitsdue to themodulusused.

Seed:Thereis an option to set a seed externally and there's a default implementation for a
seed.The seed is represented by a 64 bit integer, of which only the @®itsSare usedThiscan be
seen in the following code snippet.

1 (seed ~ OXSDEECE66DL) & (1L << 48))

Default se@ implementation: There is an implementation for obtaining a default seed. Tine i
plementation is baed upon obtaining a timestamp as can be seen in the following pseodie:

1 seed = (S U++)"+ current timestamp nano
2 seed = (seed A a) &((1L << 48) - 1)

Figurel7java.util. Random default seed implementation
Where the initial value of constai@U = 8682522807148012

Nano seconds precisiofhe defaultseedimplementationgetsthe current time withNanose-
condsprecision The value is platform depended. The Java doc only states it's a time\\aith
seconds precision from a certain constant time (not necessary the "epoch” of 1970). Motkever
valuecanbe negatie.

Seed Uniquifier (8): in order tomake consequent creati@of default Random objects create
different Random streamsa static long is added to the default seed. This value progresses by 1
each time a default Random object is created. We note thatdhoice foithe specifidanitial value
of parameter3J is notdocumented nor does it seem to affect the security of the generator

37

6.3.3 Properties Analysis

6.3.3.1 Pseuderandomness

Assuming we knowthe implementation is based ojava.util.RandomThis will give us the infe
mation thatthe implementation is LCG based and we also know the parameters of this LCG.

Known cipher text attack (Finding the missing bits from the staté):this attack we assume
that we get one or more outputs from the generator. If the generator was a classic LG&nenp
tation, meaning the output was the stateselfand not a truncated version of the stagteve would
have had the state in our hands. However, sinteher e 1 sn’t any public
entire statewe need to find those truncated missing it

Reminding thatvhen n random bits arerequested,the generator returns then MSbfrom the
state, meaning 48-n) bits are chucked from the d& before returning the outputthe attacker
needs to break a space ¢f 8

Under the assumption thatost implementatiors would requiregettingrandom numbers (-
tegers)an attacker has to break a space of in order to reveal the entire statewvhich is feasible
We still need a way to verifyur guess.

DenoteH as the 32 bit we get from the output aridas the 16 bits that we need to gue3sus
the stateat stepi, S, can be written as:

Y ¢ O O T WO

Number of outputs needed to verify our gues€onsidering LCG as a random functibwe, ex-
pectednumber ofdifferent [(besides the true valughat gets us to the samél as our guesss
q C P e ¢ ,so1outputshould be enough to validate the missing bits of the seed.

Note that thisattack is still valid if we weréo know how many times the generator was
stepped béore getting the second output.

Now, let's assume wdon't know we are dealing withjava.util. Random If we getconsecutives
outputs of 32 bits eachsince the attack above is efficient we just need to mount the attack and
finish.

6.3.3.2 Backward Security

None(not entropy based).

6.3.3.3 Forward Security

None sinceit uses LC@vith knowledge othe current state we can simply reverse the LCG and get
to the previous states.

6.3.3.4 DefaultSeed Weakness

The role of SUsince YJis a simple sequential numbewe can try althe sequences after reducing
the attack on the time based portion of the seed
Now, et ' s how manyebitsof entropy there are actually in the default seedisually po-
grams construct neviRandomobijects in two scenarios (at the application startupas static m-
stance and share it between different consumed(its) as new objects each time a random value is
needed
(a) Application startup— knowing theexactapplication startupcanbe hard, however somesa
sumptions can be done. ¥\can assume that the application startup is the same¢heserv-
er uptime(in most servers the application will be a system service that would startup shortly

38

after the s mthevwonrtcasd £t arst ap)s.ume we know not
seiv e r s :Weraniasa@me that the servgoes offline once a yeaince even a 5 nines
of availability states 5 minutes of downtime per year, this reduces our attack space to
1002(36%4ays* 24nrs* 60mins* 60sec* 1000nms* 1,000,000,s)=54.80 ~=55 bits.
We canfurther improve our attack if we were to allow some more assumptioiishe sew-
er is open to ammap probe® or to other techniques, such as patisequencing guessing,
t hen the ser veinpomtedugi thiemes x@aan wetypgicanmbpoutHe rr e’
put regarding the uptime of a server:
11.236 days (since Wed Oct 28 14:01:57 2009)
This can reduce our attack tmgy(1sec* 1000,s* 100000Qs) = 2.89 ~=30 bits.
An evenlessaggressive assumption can bedeby looking at some statistics regardiag-
erage server uptime values. Such values are available aites such as
http://uptime.netcraft.com
(b) New objects for each invocatior knowing the current time of thettacked server can be
found by many techniquesuch asobserving theHellomessage in the SSL protocol Han
shake[77.Even i f these methods aren’t applicab
synchronize their time somehow (via NT&? other measures)thus a good assumption is
that the attacker can guess the current time withmanute of error. Thigeduces the attack
to only

10G2 (Lmin * 60sec* 1000s* 100000Q:) = 35.804~=36 bits.®

3

http://nmap.org/
* http://www.ntp.org/

® Actually, according to the JVM implementation on Windows, this could be even weaker. If the Windows machine
d o e s n’ t HighwPgfprmante Counterhen the implementation falls back t@imems * 1,000,000This actually
results in no more than milli@@nds precision, which leads lmg,(1 * 60 * 1000) = 15.87 bitsk6 bits

39

http://uptime.netcraft.com/
http://nmap.org/
http://www.ntp.org/

6.4 java.security.SecureRandom

http://download-linw.oracle.com/javase/6/docs/api/java/security/SecureRandom.html

6.4.1 Introduction

This is the stronger implementatiasf a PRNG that exists in Java. As stated in the documentation
G X GKAa& A Y mihiSavycyhiplies Wit yhe statistical random number generator tests
specified in FIPS 1278], SecurityRequirements for Cryptographic Modules, section 4.9.1i-Add
tionally, SecureRandom must produce +ti@terministic output. Therefore any seed material passed
to a SecureRandom object must be unpredictable, and all SecureRandom output sequences must be
cryptographically strong, as described in RFC 1790 Randomness Recommendations for Secur
uece

Thissectionis organized in the following manner: The dessgacesection surveys the general
architectureand design of the SecureRandom providers. We then analyze each of the vaneus pr
viders in respect to the specific design space and prng algorithm used. We then follow to discuss
the PRNGnalysis of each provider.

6.4.2 Design Space

The analysis is based on s®n 154 of javasecuritySecur&andom

As given by itame, Sun states that this flavor of prng isexureone. It relies on JCAJava
Cryptographic Architecture}thus allowing pluggable JCA providers &duded and used (e.g., on
Windows platformsone can use the WindowBRNG as exposed by MS CryptoAPI (CARB).
default PRNGprovideris Sun's providerwhichutilizes SHA as the PRNG algorithm.

For an elaborate explanatiasf JCAefer to the documentationn [80].

Java Secure Random Class Diagram

[P1]

sun.security.mscapi.PRNG E
-
I 1=
2
java.util. Random java.security. Provider
1
o [P2]
sun.security.provider. NativePRNG x
1 i =
Jjava.security.SecureRandomSpi
java rity.SecureR
* +engineSetSeed()
11 mg:uﬂdsxtﬂytss{}
') +engineGererateSead|) [p3]
1| -seeder 1 sun.security.provider.SecureRandom
[P4]
sun.security.pkes11.P11SecureRandom

Figure18 SecureRandom Class DiagrafmDefault Available SecureRandomSpi

40

http://download-llnw.oracle.com/javase/6/docs/api/java/security/SecureRandom.html

Figurel8 shows the class diagram of the various SecureRandom providers that are available in
the JDKThe java.security.SecureRandoaxtendsjava.uti.Randomand uses the resolved imgsl
menter java.sealrity.SecureRandomSpivhich is theSecureRandor8ervice Provider Interface, in
order to perform the actual work

Provider APIThe Service Providgava.security.SecureRandomSylictates the following p-
erations:

1 protected abstract void engineSetSeed(byte[] seed);
2 protected abstract void engineNextBytes(byte[] bytes);
3 protected abstract byte[] engineGenerateSeed(int numBytes);

Figure19 SecureRandomSpi API methods

Besides the obvious operations of settifgetseed(engineSetSeednd geting random bytes
from the engine(engineNextBytds each specification needs to also support generating a seed
(engineGenerateSegdThis isa notable design decisiorthat allowsusing different implemenga-
tions for generating seesland asserting the semantics that a seed should be treated differently
than just getting bytes from the generator

Resolving:The resolving of the appropriate Provideringplemented in thegetPrngAlgorithm
method as follows it finds thefirst available JCA provider that implements the "SecureRandom”
service.Since the JCA contract fprovidersstate that the providers are placed in an array ina 1
based order of precedencéhe first provider has the highest precedendbusthe "best" provider
ischosen The provider provides all the JCA services andhaogssarilthe implementation of the
random generatof. If no providerimplements the "SecureRandom" service the default Surds pr
vider is chosen.

java.securityconfiguration file: the configuration and resolving of providgithe ordering and
priority of providers)is written in thejava.securityconfiguration file The default contents of the
configuration file, as shipped with new JDK installationsheaeeen irnl2.1 The file is shipped with
every installation of JDK/JRE of java underlithisecurityfolder.

The fact thatthe file resides in the filesystem and without any protection can contribute ta
downgrading attack Assuming the attacker has access to the folder in which the JRE/JDK is i
stalled, the attacker can change the order in which the providers are defined and to cause a less
secure PRNG to be invokedaturally,this depends on the perrssion of the installation direot
ries, in which the user installed the JREBwever Sun could have put ih amore securelocation,
such aspn Windows platformsthe registry locationto prevent this kind of errorWe note that
even if the file is only readable, knowing the chosen Providerfiemation that can benefit the
attacker.

Delegation: After the Provider is chosen, all titandommethods simply delegate the calls to
the providers relevant methods.

Implementations: there are several implementatiorisr SecureRandomSthiat are available in
JDKBelow is a summary of the available implementatiamsl applicable platformsthis can also
be seen irFigurel8.

® This means that if, for instancee have a great SecureRandom provider but a really bad RSA or DSA implement
tion it will be picked also for the RSA/DSA implementation. Thisdstal the fact that the order of precedence of the
providers in JCA is general and not serdependent.

41

Implementation Platform

P1 | sun.security.mscapi.PRNG Windows

P2 | sun.security.provider.nativePRNG *NIX (Linux/Solaris)
P3 | Sun.security.provider.SecureRandom Independent

P4 | sun.security.provider.pkcs11.P11SecureRandom N/A PKCPH

Table2SecureRandomSpi implementations

We nowcontinue and examine eachne of the above implementations.
6.4.3 P1l: MSCapi PRNG

6.4.3.1 Design Space

The implementation utilizes the MSAPIinfrastructure [81]. The implementation is a nativent
plementationthat uses theCryptGenRandomPI method to produce random bits.

Implementation: The implementation can be reviewed in the JDK source files under
\'srd j2sé sra windows\ hative\ sun\ securit mscapi security.cpp. All of the APl methods are
delegated to one native functiongeneratedSeed

1 native byte[] generateSeed(int length, byte[] see d);

The differentSecureRandomSpnethodsare implemented using a convention of thength
parameter.(a) Iflength < 0 the implementationuses the supplied seed to-seed the generator,
(b) iflength = 0 the implementation generates new random bytessifeof(seed)and places it in
the seedparameter, (c) ifength > 0 the implementationgenerates new random bytes of specified
length.

6.4.3.2 Under the Hoodand Properties Analysis

The implementation uses theefhult implementation that exists in the MSAPI implementation,
including the default seed generation.

For a detailed analysis of the generator that is uaed its security propertiegn the MSCAPI
infrastructure please refer tthe analysis of the Wirelvs Random Number Generator3t8.

6.4.4 P2: nativePRNG

6.4.4.1 Design Space

This implementation utilize&lev/randomand/dev/urandom This is the OS based generator that is
available in *NIX. Please refer3or for an explanation of the algorithm used by this generator.

The implementation uses a singletorstance of the inner clag8andomlICOfor the actual work.
According to the commentshis is in order to not open the file descriptors ffev/[ulrandom
every time The singleton instance is instantiated during class initialization.

Urandom buffer(urandom_buf) The implementation uses a buffer on top /aev/urandomof
32 bytes The bufferalso has dreshnesstime, Tiesh, 0f 200 msecThis means that we will always
reset the buffer when trying to read datahich passed this freshness time. As explained in the
actual code commentshis is to prevent the implementatiofrom readng stale datafrom the
buffer.

Mixing algorithm: The implementation also uses the default SUN implementaf$jn order
to mix in random bytesrom both implementationsAccording to the documentationhts instance
is used in tandem to the native geneoaf in order to make sure the user has the ability to set an

42

external seed. This seems like a technical/design decision, since setting an external seed under *NIX
platforms must be performedy writing to the /dev/ [u]Jrandom deviceand in some systems it
requires root access'he designers chode addthe P3 instancan order to fully support the &
cureRandom API, which requires the ability to seed an external géleithvocations of this flavor
also mix random bytes as read frd?3

Initialization processthe initialization process opens theput streams from both devices and
initializes the urandom buffer. The initialization of the mixing algorithm is lazy, upon demand. It is
initialized by reading 20 bytefrectly from the /dev/urandom input stream.

6.4.4.2 Under The Hood

PRNG implementationthe algorithm implementatiorgets random bytes from tharandom buffer
and XORs it with random bytes frd@3(as its mixing algorithmYhe pseudo code for getting bytes
from the generator ftlows.

if P3 is NOT initialized then /I initialize P3

read(/dev/urandom, buf);

P3.engineSetSeed(buf); // buf is 20 bytes in size
end

/I put random bytes from P3 in outBuf
P3.engineNextBytes(outBuf);

OCO~NOUITRWNE

10 /I Get data from the urandom_buffer (fill if needed) and XOR with P3

11 len = outBuf.length;

12 offset = 0;

13 while (len > 0) Do

14 fill_urandom_buf_if needed(); /I Check if we need to fill
urandom_buf

15

16 outBuf [offset] A= urandom_buf [offset];
17 len -- ; offset++;

18 end

Figure20 engineNextBytes(byte[] outBufpseudo code

Adding data to the urandom buffeffill_urandom_buf_if needed)the implementation always
returns data to the caller from the urandom buffdn case thebuffer is empty or the data in it
exceeded fesnthe buffer is filled by reading chunk of32 bytes from /dev/urandom.

Setting an external seedan external seed is set by trying to write to the /dev/random device
and by setting the seed in the mixing algorith® In case/dev/randomis not available fowriting
the seed will onlybe setin the mixing algorithmWe not e t hat t he repladeer na
the state in any of the generatarbut is added to the entipy pools (se¢49] and 3.7 for details).
The pseud@odefor setting the seed follows.

1 if (/dev/irandom accessible) then

2 write to /dev/random seed bytes.
3 end

4 P3.engineSetSeed(seed);

Figure21 engineSetSeed(byte[] seeg)seudo code

Generating a seedwe remind ourselves that each provider should support an APl method of
generating a seed.hE implementation readghe specifiedhumBytedrom /dev/randomin order to
generate a nevgeed.

Default seed:the implementationlets theLRNQu s e i ts own default see
any alternative default seed on its own. TR8generator is seeded by reading 20 bytes from the
/dev/urandom interface.

43

/dev/urandom vs. /dev/random: the major difference between the two devices, eplained
in 3.7, is that the /dev/random device blocksf t her e 1 sn’ t e nBylhagrighient r o
property, the /dev/irandom output is consideretl e x t r e me {ay it abvays osasgriore eotr
py. /dev/urandom implementation is the neblocking deviceHere these two devices are used in
tandem: /dev/urandom as the main deviteing used in order tproduce the actual random bytes
for consumersand/dev/random only if this generator is used in order to generate a seed.

Entropy Useby using the random devices available on *NIX platforms this implementation ut
lizes entropy from various inputs (suchiaput devices, hard disk writes etcBor details regarding
the exact entropy extracting algorithm the user is encouraged to féad

State the state of this generator is dictated ltlye states of both generators:

1. The size of the primary entropy pool that is used by /dev/[ulrandom deviBssseen ir8.7

the size of the pool is 512 bytel§.we ’ allolv ourselves t@xamine only the state size of the
urandompool, we getasize of 128 bytes1024 bits.

2. The size of the state #13is 20 bytes, which &60bits.

This leads us to a combined lengthldB84bits.

Period the algorithm used reliesn various entropy sourcesnd utilizes several invocation of a
SHAL1 variant Due to thefact that the LRNGusesan external source of entropyliscussinghe
periodfor this implementation isrrelevant

6.4.4.3 Properties Analysis

6.4.4.3.1 Pseuderandomness

Assuming weknow the implementation P2

Brute Force A brute force attack requires going over the entire space of one of the pools that
are used. Taking the 3&ords pool of /dev/urandomit will require , Which is nota feasible
attack space We also have to take under consideration tA8generator, of which a brute force
would require breakingnother space This takes us to @mbinedstrengthof . Here we
assumel thatt o 6ugput is independent othe LRNG

Entropy usewe note that due to the entropy added to the generator, brute force is onlyiappl
cable during times that no entropy is added to the states.

Dependence of the RNGand P & &iScd R3 is initialized from thdev/urandomand then
XORedvith bytes from wandom_bufin order to get outputs might lead to weaker effective emtr
py of the whole construct due tboth using outputs from /dev/urandonfurthermore, thecompo-
sition of two generators LRNGand P3 is a choice that resuétd from a desigfdeploymentissue.
Alt hough we di dn’ t rdsultedifomahesedependaricieselsiss t dh@ad-s n’ t
sarilymake the scheme more secure

The usage of /dev/urandonmand not get_random_bytesaccording to[82] (page 40, chapter
6.2)there is a weakness in environments that only tise device interfaces of theRNG nd don’ t
use the kernel API functioget_random_bytesThe main weakness is that thieandompool is not
refilled with entropy from the primary poalvhen the system only utilizethe devicesn order to
produce randomnessAl t hough we ¢ oaudeplogment that kvaould kevep dse
get_random_bytesour implementation fits the papérs ¢ oas it @nly nses /dev/urandom in
order to getrandom bits

" These words were used by the designer of the linux random generator. For a detailed discussion regarding this,
please refer td49] chapter 3.4.

44

Performance vs. Security

1. Only using/dev/urandom: the developers clearly state in the class documentation that the
facttheyR2 y Q0 delirp dataNdBm /dev/irandom as a positive attribute of this il
mentation from the fear of the blocking nature of /dev/randofRor instance, this choice
makes the implementation vulnerable to the weakness expressdddhin casethe can-
suming rate is higher than the entropy generation raddthough noting this igprobably a
reasonable decision, a better design would have also allowed the usenfaurewhether
she prefers taise /dev/randomfor extra security while risking blocking her application

2. Buffering of /dev/urandom andTsesh as a hidden security parameter:the reasoning for
choosing 100ms as the freshness time nsn’t
troduces anothersecurity parameter that can directly contribute to the security of the
scheme. Consider a situation where the buffered 32 bytes (or part of them) were read from
/dev/urandom at a point that the entropy level was poor and immediately after reading
thesebyes, the entropy was refreshed. I f our
buffering and simply read from the device, this low entropy might have influenced only
some bytes and not the entire 32 bytes.

6.4.4.3.2 Backwards Security

We are not aware of any attés on the backward security @qRNGso we can conclude that this
implementation has & backwards security strength agell.

6.4.4.3.3 Forward Security

Forward security is achieved by having the entropy inltR&NGefreshed throughout the gener
t osmwobrk As shown 3.7, there is an attack othe forward security o RNGwith a time comple-
ityof €1 ,depending on the attack varianthile the memory complexitist p .

We point out that he fact the generator is always XORed witR3anstance is irrelevant to the
forward security of the construction. This is due to the fact that no entropy is addé&Bsstate
during the generator work.

6.4.4.3.4 SeedSecurity

LRNGseed the seed implementation of theRNGs based on various machine generated entropy.
A thorough review of the entropy generatarechanismand its weaknesses are presented49).

Usage of /dev/iurandomf o r P 3 thesfactsthatetie seed for P3 is also frddev/urandom
canalso result in a weaker seed for R8 reasons noted earlier. If the implementers alreaghyne
to the length of having this generator alongside the native one, a better entropy seed could have
beenachieved usingdev/random.

6.4.5 P4:Pl1SecureRandom PKCS11 implementation

An implementation for a PK€3 [83] environment;this implementation is out of scope for this
work. The implementation is for environments th&br instance use smaricards; then these
smartcards are accessed via this implementation in order to produce random bits using the smart
cards hardware random generator.

6.46 0 0d 8efalIBRRNG implementation: SecureRandom

6.4.6.1 Design Space

The sun implementation can be viewed in the implementation class sun.security.provider.Secu
reRandomThis is thedefault implementationof the SecureRandom provider.

45

The impémentation providesa platform independentimplementationwith the use of anun-
derlyingalgorithm based on SHA(see6.4.6.2for algorithm detail’.

In this implementation we are introduced for the first time to a new class, responsible for the
seeding operation. The class san.security.provideseedGeneratorand has only package level
visibility, so only security prader implementations can use it.

The implementation uses the following members to implement the generator:

1 private static SecureRandom seeder ;

2

3 private transient MessageDigest digest ;
4

5 private byte[] state ;

6 private byte[] remainder ;

7 private int remCount ;

seeder a class member which holds the implemeation for the seeding function. The seeder i
self is another instance of th8ecureRandorgenerator, whichis initialized using th&eedGenar
tor implementation.

remainder:an array that holds the remainder of the state, as saved betwa&grmediate op-
erations of the generatoremCountis theactualsize of the remainder.

state: the state of our generator, the state is updated in each needed run of the generator.

SeedGenator: the addition of the SeedGeneratatlassmakesthe implementationof P3even
more cumbersome as now we have another implementation which is only available for seeding
purposes and haslifferent implementationbetween platforms. This clagsas a set ofesolving
rules of its ownin order to decide which seeding algorithm to u3ée class diagram of the seed
generatorprocedurefollows.

Java Secure Random Default Seeding Generation Class Diagrarm

a java.lang Runnable ‘

[sG1] [562]
sun.security. provider.SeedGenerator. URLSeedGenerator

[5G3] [5G4]

7

sun.security. provider. NativeSeedGenerator sun.security.provider NativeSeedGenerator

Windows
*MNIX

Figure22 Seeding Generation Class Diagram

46

sun.security.providebeedGeneratohasthree concrete implementations:

1. SGlsun.security.provider.SeedGenerafbinreadedSeedGeneratethe fallback implems-
tation provided by Sun. A platformdependentimplementation that utilizes various system
events as entropy sourcellore details of this implementation i6.4.6.2

2. S@: sun.security.provider.SeedGenerator.URLSeedGeneratnrimplementation thatin-
vokesa URL in order to recee random bytes from itCan be useful, for instance, in order to
use theegd (Entropy GatheringDaemon) [84] or services likevww.random.org

3. SG4:sun.security.provider.NativeSeedGeneator (*Nb§hipped with UNIXvariants. The
class is implemented by extending th&lRLSeedGeneratofor reading from the
file:/dev/random interface as the URL.

4. SG3: sun.security.provider.NativeSeedGenedidindows)— a native seed generator, which
is available only on Windows machines. Gets the seed from the -NISPI interface,
CryptGenRandorunction.

Seed Generator Resolvinghe resolving of the proper seed generatorbigsed on a configar
tion valuethat exists either in thgava.securityfile or as a system property passed to the VM. In
caseeither /dev/randomor /dev/urandomis passed as a value to the k&scurerandom.sourdde
NativeSeedGenerator is usetn a Windows machine, the Windows varianttloé NativeSeedGe
erator is used andn a *NIX machine, thédev/randomNativeSeedGenerator is uséife note that
even if the user explicitly wants to uggev/urandomas the source, the implementation still uses
the blocking interface/dev/random It seemslike a decision toguaranteethe seed is strong
enough.

{ SSRDSy aMMétddsD &

1. getSystemEntropy()implemented in the SeedGenerator class itsethducesSystem based

entropy. Exact entropy sources and algorithm details exist in the next section

2. generateSeed(byte[] resultlused to generate a seed using the resolgegd generatoby
invoking the abstract methodetSeedBytg.

6.4.6.2 Under the Hood

The theoretical PRNG behinthe PRNG uses SHAnvocation over the provider's stat&€he alg-
rithm follows:

Xn = SHA‘(Sn)

ginitial seed n=0
= 160
i (X1 +S,; +)mMod2'®® n>1

Figure23 Sun's default generator

WhereXi s the generatopgi sstmextgeoetrpaooransdi 8t er na
Entropyuset her e i sn’t any us etateofthegeneratoopy t o r ef r
Period considerthe functionSA S.+1as a random functiorfpllowing the birthday paradoj85]

we should expect an avege cycle length afoughlyg
State:the state is20 bytes in size.
Seed: (option to set the seed externallyhere is an option to externally set the sedd.case

there is already a state to the generator, tsee e d d o e s ihButtonly sapplénsemtseon the

current state.Letext_seede the externakeed to be usedhis is done by the following:

S, = SHA(s, ,.concaiext_seed)

47

http://www.random.org/

Generating a seedremindingourselves that each provider should support ARl method of
generating a seedhe implementation invokeSeedGenerator.generateSeeiorder to generate
the seed for the caller.

(Default) Initial seed(S): the default seed generation processlazy and performed uponed
mand, requiring the use othe sealer instance.We continue with a deta@éd description of this
process. We use #hfollowing notations:

1. SG -the resolved SGSeedGeneratorps resolved in the descripticabove
seeder¢ the instance of the seedingenerator.
prng - the instance of the actual PRNG used to output the random bits.

/I Stepl - Get system entropy - seed the seeder , |systemEntropy| =20B
systemEntropy = SeedGenerator.getSystemEntropy();
i QQQ&iISHAL(systemEntropy)=SHAL(i QQQQIi

I Step2 - Get SeedGenerator dependent random data , |[SG*Output|=20 B
SGOutput =SG ~.generateSeed(20 bytes);

/I Reseed the seeder with SG*Output
i QQQGISHAL(i Q'QQ.toncat(SG*Output));

O O~NOUIR BN WN

11 /I Step the seeder state and get the initial seed for the algorithm
12 ni €Q=1 QQQ@ISHAL(I QQQQI

Figure24 P3 default seed algorithm
The system entropyis collected from 3 major entropy sourcedime based entropy, system
configultion and system runtime state:
1. Timebased entropy-takingonebyte of the currenttime, in msec.
2. Systemconfiguration:
a. Names and values of the JVM system properties.
b. The name and IP address of the machine.
3. System runtimestate:
a. The filenames of th@ava.io.tmpdirfolder.
b. Snaphot of memory state of the JVM: total memory allocated and the free memiery a
located for the VM.
The algorithm for generating the system entropy follows:

1 /I Time consideration

2 Il 64 bits of time since epoch (1/1/1970) A 8LSb bits
3 IsbTimeByte = (byte) System.currentTimeMillis();

4 buffer.concat(IsbTimeByte);

5

6 /[System properties

7 For (property in System.getProperties()) Do

8 buffer.concat (p roperty .getName());

9 buffer.concat (p roperty .getValue());

10 end

11

12 /I Computer name and IP

13 buffer.concat (ipAddress + 6/ 8 + localMachineName);

14

15 /I Filenames from the TEMP (java.io.tmpdir) directory

16 For (fileName in files(java.io.tmpdir)) Do

17 buffer.concat (fileName);

18 end

19

20 /I Memory stats

21 buffer.concat (totalMemoryLength); /I The total VM memory
22 buffer.concat (freeMemoryLength); /I The free VM memory

48

23
24 system_entropy=SHA1(buffer);

Figure25P3 system entropy gathering
We continue to describthe implementationdetailsof the SG implementations:

1. SG2:sun.security.provider.SeedGenerator.URLSeedGeneratbe implementation opens a
BufferedOutputStreamwith the default buffer size d8 KBto the supplied URL.

2. SG4 sun.security.provider.NativeSeedGeneator (*NEX)implemented by extending the
URLSeedGeneratanth the URLfile:/dev/random. Source file came found in the JDK source
archive, undef2sa srdsolaridclassessun securityiprovider.

3. SG3 sun.security.provider.NativeSeedGeneator (Windows)he implementation invokes a
native method namednativeGenerateSeedlhe method is natively implemented ogi the
WRNG (se8.8) by invokingCryptGenRandomSurce file can be found in the JDK source a
chive under j2sesrd windows classessunisecurityiprovider and the native implementation is
under j2sésrd windows native\sunsecurity provider.

4. SG1:sun.security.provider.SeedGeneratdhreadedSeedGenerater the SGlseeder is only
used as dallback mechanisnfor installations where no native support for OS based PRNG is
available (such as Solaris of version < TH.implementation of SG1 is quite complicated and it
seems to be well thought off. Its description follows.

SG1 detailed descriptiorat the core of the implementation there is a thread that is responsible
to keep a random bytegueue denote entropy_queue The implementation uses this thread to
asynchronously fill the random bytes queugandom bytes are returned to the caller by simply
getting bytes from the queue. In case the queue is empty the caller waits for the queue to fill up
again.

Performance ofSG1.we note that the initialization process of this thread, from a performance
point of view is very bad. The first SecureRandom instance that is instantiated blocks in order to
create this thread, until sufficient entropy is in the queue. On a stand@ri Bbokseveral seconds
to instantiate this thread.

Entropy gathering in SGkhe process gathers entropy by trying to estimate the load on the
machine. The following pseudmde describes this process.

1 While (counter < 64,000 and quanta < 6) Do

2 /[Spawn a bogus - thread

3 new BogusThread().start();

4

5 /[How many operations can we perform in 250 msec?

6 For (250 msec) Do

7 syncrhonized (this) {};

8 numOperations++;

9 end

10

11 value = value XOR perm_table[numOperations % 255]; /I |value | =1B
12 counter += numOperations;

13 quantat+;

14 end

15

16 queue.push(value); /l Add the generated entropy byte to the queue

Figure26 SG1 entropy gathering algorithm
WhereasBogusThreads a thread that is spawned in order to add some entropy to the thread
scheduler. Th&ogusThreadmplementation sleeps for 250ms by iterating 5 times and sleeping for
50msin each iteration.

We couldn’t find any r eas o0 nebsthegaboaeparanteters;Bugh t h €

as the 250ms and spitount of 64,000.

49

perm_tableis a fixed permutation tablef 255values thatcan be seen iil1.1.1.1 According to
the code comments, the table was generated by generating 64k of random data and usingpit to
the Trivial Permutation

6.4.6.3 Properties Analysis

6.4.6.3.1 Pseuderandomness

ByusingthesHAlas a pri mary bui findabeteraitdclotltak thenaetualcsiaewof d n’
the SHA1state buffer, which is 20 bytes. We can conclude that the strength of this variant is
strong.
Proprietary implementation: the generator that Sun chose thave as the default generator is
a proprietary implementation that although the use of known building blocks is still utilized in a
proprietary way. The seeding generation algorithm, according to the documentation of
sun.security.provider.SecureRandomaswnever thoroughly reviewed nor widely deploydaig can
be seen in thgavadoc of the default constructor ddecureRandon

6.4.6.3.2 Backward Security
None (not entropy based).

6.4.6.3.3 Forward Security

By using SHA1 as the core building block, we actually achievevarfosecurity that is the size of
the SHA1 output, whicls . We note that recent yearSHAL collisions that wergresentedin
[86] are actuallynot applicable for this scenarigjncewe want tofind a previous state (or some of
it) using a current state.

6.4.6.3.4 Default SeedSecurity

The default seed generation mechanism is one of the most complicated stepsiirst gener at
implementation.The implementers went through great length to haaough entropy used in the
default seed generation. n t his section we’ || note sever al
sources used.

A rough estimation of the entropy we get froBtepl(system entropy) of the seed generation
follows.

1. Current time—since we only take the lower 8 bits of the current tintds not easy to guess this
value This is due to the fact that 8 bits can represent 256 msec, which is a harsh requirement of
the attacker to know the ect time of the time the seed was generated
Amount ofexpectedentropy bits: 8 bits.

2. System Configuration

a. Java system properties- this sourcehasvery limited entropyasit is predictable k-
tween installations and machined/e © v e t e st eetgaludtingnthesdhe result is
that per system environmentonfigurationused (Windows or Linux and JRE version) the
system properties wereompletelyidentical.
We note that some application servers and popular java libraries, such as log4p-do su
port configuration vighe java system properties mechanism.
In this scenario it is still easy to predict the names and values from these configurations.
E.g., consider a logging configuration filenameldgd: we already know the key of the
property to belog4j.configuratio. The value is also easily guessable by trying popular
names such a®g4j.xm| log_config.xmktc.

50

We further note thatin modern system most configuration are based on external co
figuration files, for better management and readability, so the actis& of the java s¢
tem properties mechanism is not widely accepted.

Amount ofexpectedentropy bits: ~0 bits.

b. Name and IP address of the machirave can assume that the attacker has this mfo
mation. This information iselatively easyto get by using various tools, such mmap.
Amount ofexpectedentropy bits: Obits.

3. System runtime state

a. The filenames of th@va.io.tmp directory—this source is harder to predict as it requires
a very intimate knowledge with the specific system, ldgment and applications n:
ning on the target machiné/e found it hard to actuallimit the entropy inputs here.

We note that in most environments periodical cleaning of the temp directory is pe
formed. Thisleads to the fact that this entropy sourcessnsitiveduring times wherthe
cleaning proceduréad just been perfaned.

b. Memory size snapshot assuming that most attackers will target an enterprise grade
application; we can assume that the chanc
to the fact that the patternof enterprise software is to occupy a lot of the memory-all
cated to the JVMor application level caches. We can assume that changes are within a
few hundred MB for an application that consume2@B. This gets us to amount of-e
tropy of ~37 bits (100 MB) and ~74 bits (200 MB).

Amount of expected entropy bits-37%74 bits.

We observethat if we were to allow ourselves to have access to the attacked machines, all the
entropy sources aboveould have0 entropybits, as it is easy tknow every parameter.

We note that the system entropy gathering, despite having very limited entwdpgh isof less
than the desired 160 bit entropig notasimportant for the seed strengtlinceSep2 of the seed
generation caradd entropy fromnative based generators.

Step2of the seed generation depends on whiSiwas resolved during the SG resolving-pr
cessIn case one of the native varian(SG2SG4 of the SGwas chosen,we on’t have a w
to shareand thuswe can assume that the strength of this steghe required . We note that
the weakness described H14.4.3.1due t o t he wuse of IicAbtederd, asrthe n d o n
seed uses /dev/random.

SG1 WeaknessesSinceon the two major platforms, Linux and Windows, deo nfdll backto
the weaker seed generat@®Glan analysis of the strength &Glseemsless important We have
tried to empiricallyperform tests regarding the amount of entropy we get from running the entr
py collection procedure in SG1. Our results were quite surprising, as it seems that this procedure
does achieve good entropy resulihe fact that numOperations count is pecfed on 255 values,
using the Bbvalues seem to remove dependence that naturally exists in the higher bits of the
counter.

Controlling system load by an outside attackeWe statean obviousweaknessof the alg-
rithm used for SG1 The attempt of using timing based entropy that correlate to the JVM load
seems veryisky. Consider an attacker who can control the perceived load of a machine. Then this
attacker can attempto producea heavy load on the application, thus controlling tamount of
entropy that the seed generato§GIproduces.

51

7 C#(NET)

7.1 Introduction

The following details were extracted from Microsoft's implementation of .NET4.1[87], called
CLR57].

Despite t he f aGLRmplerheatationhsibasicallysaoclosed source, Microseft r
leased to the general public a copy of tB&Rsource code, named Shared Source (SBICL[BS]
dated 23/3/2006 We used this source code in order to understand the exact implementation of
the System.Security.CryptograpRINGCryptoServiceProvidgenerator. The source in SSCLI was
verified to be the one that is used in the @krsionwe coveredusingthe tool .NET reflectof89].
Snce we showin the following analysia bug in the implementation obystem.Randome also
made sure that this bug also exists@blversions 3.5durrent) and 4 4 release candidate of the
next .NET framewojk

In order to verifythe code pathof the native codeused inRNGCryptoServiceProvides used
the IDAPro[4] disassembler.

Giving the fact thamost .NET applications are used on Microsoft Windows platfomasvill
reviewthe implementation only for Microsoft's Windows platfoem

7.2 System.Random

http://msdn.microsoft.com/enrus/library/system.random.aspx

7.2.1 Design Space

The analysis is based on version 2.0.0.8ystem.Random
TheAPIof System.Randorollows.

public Random() ;

public Random(int Seed);

public virtual int Next();

public virtual int Next(int maxValue);

public virtual int Next(int minValue, int maxValue);
public virtual void NextBytes(byte[] buffer);

public virtual double NextDouble();

prote cted virtual double Sample();

O~NOUPRWNPE

Figure27 System.Random API
The actual code, as generated by the Reflector can be viewed.hl All methods abovenvoke
the maininternalSample(jnethod, which returnsamtf r om t he gener ator’ s i1
Ability to reset the seed during operationunlike its Java counterpartt her e i sn’ t ;
method to reset the seed after the Random instance had been created.
Absent of seedUniquifier: consequent creation oRandomobjects can result in having the
same random stream. This means that if different random sequences are imp&otahe applia-
tion care should be taken when creating multiple Random objects. The MSDN documentation
recommends on creating only one Random object and getting random values from it. Another way
to solve this is to add a unique sequence to eRamdomcreation, or some other form of salt. We
note that from a practical point of view most developers would simply create Remdomobjects
without thinking/knowing about this issue. Java, on the other hand;aa®redin 6.3.2 solved this
in its implementationby adding the seedUniquifier.

52

http://msdn.microsoft.com/en-us/library/system.random.aspx

7.2.2 Under the Hood

The theoretical PRNG behind it is the subtractive random number generatdgorithm that was
introduced byKnuth in[1]. Thegeneralalgorithm is detailed i2.4.5however we’ | | rer
details here that del with the implementation in C#.

Therecurrence formula of the generator followa/hereas the parametersising the notations
that were used in writing thgeneral algorithm ir2.4.5 herearej=55and k=34

A A A d €' ph & =

Thealgorithm is implemented by keepirgcircular list of 56 random numbers, which is initially
filled as ma[l]Xss, ma[2]=%64, ..., MX4&.*Themitlakzation is the process of filling the list from a
seed and then randomizing the list using a deterministic algorithineimplementation holds two
pointersto the list, inextpandinext, which are kep21 indices apartAn output of a random ine-
geris the product of subtracting the two list values at the two pointdigs new random integer is
alsostored in the list.

Similarity to numerical recipesn C implementation:The implementation used here seemis a
most identicalto one introduced ir{2] ran3function. Themainchange that exists in this impleme
tation is that instead of keeping the two indic8% places apart, like Knuth suggests and fike3is
implemented,here the indices ar@1 places apartWe note thatthe open sairce implementation
of the CLRthe monoproject [90] does implement this with th&1 value A detailed analysis of the
effects of this changesin 7.2.3.1below.

Algorithm implementation: The detailed implementation in pseudo cofi#lows.

1. Generatorstate:
a. ma[56] — the array of 56 integers, where onigdices 1..56 are actually used, thus we
have 55 random numbers.
b. inext, inextp¢ the pointers to the array.
2. Parameters:
a. MBIG=2147483647F (¢ P).
b. MSEEB1 61803398 (th[@8l]).“gol den ratio”
c. Seed-an integerseed tousein initialization.
Initialization processFirst, we show how the algorithimitializesthe generators” state:

tmpl = MSEED & ABS(Seed);
ma[55] = tmp1l;
tmp2 = 1;

Foriin 1..54 Do
index = (21 * i) % 55;
md index]=tmp2;

O©CO~NOOUITRRWNE

tmp2 = (tmpl 0 tmp2) % MBIG ;
10 tmpl = ma[index];
11 end

13 Forjin 1..4 Do
14 For kin 1..55 Do

15 mdk] = (malk] o ma[l+((k+30) % 55)]) % MBIG;
16 end

17 end

18

19 inext = 0;

20 inextp = 21; ’

Figure28 System.Randonmitialization algorithm
Stepping the generatorstepping the generator idetailed in the following pseudo code

53

1 inext = (inext %56)+1 ;

2 inextp = (inextp % 56) +1;

3

4 outputNum = (mafinext] 0 malinextp]) % MBIG;
5

6 ma[inext] = outputNum;

Figure29 Stepping the System.Random generator

Choice of mi t ’
Knut h’ s @ numeribakrecipes.elt cauld be that thisas chosen to be the biggest positive
number for 32 bits integexin order to support returning more bits to the user in a single cycle of
the generatoror due to the point showed if62] and [92] regardingskews in the bit distribution
tests of bits 2229.

The selection fok is not understandableandit is a flawin the algorithm because it causes the
polynomial of the generator to be reduciblas can be seemt he “short <cycl es
in7.2.3.1

Period dueto the fact that the polynomial of the generator is reduciltlee period is input @-
pendent and does not achieve the maximpaksibleperiod for all inputs.

State The state size is 55 values3df bits valueshat are stored in an arrgysothe total size of
the state i555*31=1705bits.

Output: The valie returned to the calleat stepé¢ is a 31 bitvalue which issimply

Entropy usethis implementationR 2 S ZagdQ@uily entropy to the generator.

Seed:the only option to set the seed is dag first insantiation of the Random objecThe seed
is an integer value of 32 bjtavhich is expended to the whole state array in the initialization phase

Default seed implementationthe default seed takes the current tidount, by invokingenv-
ronment.TickCountThis value i82 bitsinteger and representsthe amount ofmillisecondsthat
passed since the computer wesstarted, whi ch means -timee computer

7.2.3 Properties Analysis

7.2.3.1 Pseuderandomness

SQubtractive random generatorgyeneral note Knuth statesin [1], page 28that one should think

)

S

carefully before using this PRNG implementation since it doesn't rely on a strong proven theoretical

backgroundas other generatoraind thata lot is known about LC@soperties whereasiot much
is known about the subtractive methodle also states that this method has passed all the sfatist
cal tests and hasgood long cycle when used with correct parameters.

Small cyclesn Isb bitdue to bug inthe implementation: thereis a bug in the implerantation
in C#of Knuths algorithm. The bug causthe construction to not behave like Knuth pointed put
t hus | nhecabsaryguarantee the long full cycl®Ve willshow a theoreticahnalysisof short
cycles existencen the Isb bit We will also show concrete examples of inputsatslightly modified
version of thegenerator that indeed have a very short cyrighis Isb

Theuse of2linstead of31 for the k parameter the distance betweerthe two pointerg cause
the generator to be witha generatingpolynomialof ‘Ow e ° instead of Knutfs
polynomialof e o . This polynomiaR 2 S Zsgti§hyitherequirements of being primitive

¢tKdza ¢S R2yQd 3S iull dydteSFurtBaimhoid]a y§ (i V& ° 2 PolytomiaA & yhQ (s

evenirreducible

By running the codenihttp://code.google.com/p/rabinfingerprint/source/browse/trunk/sc/o-
ra/bdwyer/galoisfield/Polynomial.java?r=5ve found the irreducible polynomials thdactor the
polynomial 3(x). These polynomials are:

54

s not documented why the i k@iGtement e

a

http://code.google.com/p/rabinfingerprint/source/browse/trunk/src/org/bdwyer/galoisfield/Polynomial.java?r=5
http://code.google.com/p/rabinfingerprint/source/browse/trunk/src/org/bdwyer/galoisfield/Polynomial.java?r=5

® p
2200 0 ® ®© © O O O O 0 O 0P
3.Ow Lw W ® G 19 I ¢ S ¢ S ¢ N B ¢V N ¢ R 0
W 0w p

In the next discussion we will see how theslucible polynomial G(xgaffects the Isbbit under
the simplificationthat MBIGis even (and not odd as in the implementation)This is done because
adding MBIG which is od@s opposed to the one that was usednamerical recipes in &d in
Knuth changsthe Isb and makethe analysis more complicatgdt seems likea relevantassunp-
tion to the analysis thaeémphasize$iow fragile the current implementation is.

We denote Sas the state consisting of only the Isb bit of eathte element, thus|S|=55 bits.
We verified thatpolynomialsH(x) L(x)and K(x)are primitive, thus we know that each polynomial
inducesa maximal cycl®f ¢ p, wheredegis the degree of the polynomidlVe denote each of
these cycles asycle(H)as the cycle oH, cycle(Lps the cycle ok etc. We can consider eac$tate
variable, § as atriplet of the projections of ®ver G spolynomialfactors

Smod G(xF (5, § §) =(§mod (H(x)),Snod (L(x)), Enod (K(x)))

Reminding ourselves thateppingan LFSR is in fact performiKgr S(x) mod G(xg)ets us to the
equivalent representation of

X*$mod G(x) XX(§", §, §) = (X*$Smod (H(x)), X*$nod (L(x)), X 8nod (K(x)))

Soafter k stepsfrom the initialstateswe get
Scmod G(x) B *Symod G(x) =0 XS, %) =

(@ *Somod (H(x))®d *Spmod (L(x))d *Spmod (K(x)))

So thecycle length kis the minimal number for whiclld & ¢ @ w p for each #1...3. Thisis
exactly theLCMof the orders ofx inthe field induced byF, where"Yd ¢ A Tt

Below are thecyclelengths histogram, where we divide the seeds to buckets according to being
divisible by G(x)'s factors. The cycle kength
sponding to the polynomialsth& 2 y Q& RA PA RS GKS aSSRa

S Cycle Length
1 0 0 * S q cycleK)x p
2 0 * 0 C C cycle(L) = p
3 - 0 0 C S cycle (H) € p
I N N A
4 0 * . e c lcm(cycle(K), cycle(L)) =
- € P(g peg
5 * * 0 ec lcm(cycle(L), cycle(H)) =
- € P(c peg
6 N 0 N o Icm(cycle(K), cycle(H)) =
i cycle(K)Jx p

7 * * * C WOETIMDO O E O Icm(cycle(K), cycle(L), cycle(&l)

Figure30 Cycle Length Histogram

55

Finding concrete inputswe managed to find concrete inputs that would get the generator
(having even MBIG) havethese shorter cycles.
1. If we ignore thanitialization processhat was described if and directly set the initial state Isb
bits to be{ 0, 0,0,0,0,0,0,0,1,0,0,1,0,1,0,1,1,0,2,1,1,0,0,0,0,0,2,12,0,0,1,1,0,1, 1,
1,0,14,0,0,1,1,0,0,1,10,1,0,0, 1, 0, 1, O, OQrpsb first) we geta cycle.This input
was found bytakingK(X)*L(X)We notethato r ut e f orce won’t waak sir
ting a state with such short cycle - -

2. We also find a seedyefore the initialization processthat its expansiorafter the initialization
phase corresponds to a polynomiahichis a multiply of H(X)*L(X) so it has cycle
This inputis (47368)pand itwas foundby performing a brutdorce over thepossibilitiesfor the

seed which was doablebecause the probability of such input is -

We continue to outlinemore attacks regarding the general implementation of the algorithm,
and not regarding the reduced cycle length.

Assuming we knovthe implementation is based o8ystem.Randonthis will give us the infe
mation of the algorithm used for the generator and its parameters.

Brute Force:a brute force attack of the state woulcequire searching a space of °

possibilities which is a very big search spaEellowing thighe next attackassumes we can
get outputs from the generator.

Known ciphertext attack: consider we have the ability to obserugteger outputs from this
generator. For instance, consider application that uses this generator to produce an ID that is
visible to the user of the applicatiofecallthat the generator simply outputs the number which
will now be in indexnext This leads us to the fact thafter getting 55 consecutive outputfrom
the generatorwe have the entire state in our hands. From this point on, we aigyint with the
generatorWe note that the assumption of rgstittitei ng
assumption

Not getting consecutive outputsin the attacks aboveve required getting 5&onsecutiveout-
puts. We can furthemrelaxthis assumptior{of consecutive outputs3ince we know the parameters
of the generator;we only require knowing thposition of the indicesduring the output.If we were
to know this, we can construtihearequations that would end up revealing the entire state.

l AadzyAy 3 g StheRdpe@entatipryi® based oBystem.Raram. If we allow our &
tacker togather 55 consecutivesutputs from the generator, the we canjust try to run the alg-
rithm and see whether & are synced with the generatoit is easy to see thatve can achieve a
distinguisherwith only 3 outputsdfd iy R . After getting these outputs we can verify that
these 3 outputdulfill the recurrenceformula. The amount of false positives here is very low %2
so only these outputs suffice.

7.2.3.2 Backward Security

None (not entropy based).

7.2.3.3 Forward Security

None-if we have the state in our hands, we can reconstruct the subtraction equaticorsiar to
get to a previous state.

7.2.3.4 Seed Weakness

56

Using time variations as the seed isn't secure enough. Here the seed is the systetirse'ue
will show the entropy we get in the default s
Brute force:as the seed is only represented h 32 bit integer, the attacker needs to break a
search spacef , which using hardware found todaydsite feasible.
How many entropy bits do wéhave in the default seed?The sametechniquesthat we used
in 6.3.3.4in order to estimate the entropwre applicable herecor t he sake of com
briefly repeat both techniques with different parameteralues to adhere to this implementation
(a) Application startup— knowing the exact application startupne can easily be achieved by
nmap probesor other techniques, if the server responds to these queries. Using this tec
nique we can pirpoint the serversuptimeEven i f we cawetangestke t he
attack to an order of days, which a day has about millisecondsMoreover the attacker
could try and force a restart, thus limiting the amount of entropy the seed has.
(b) New objects for each invocatiom assuming the attacker can guethe exact time of the
server up toone minute of errorand with the assumption we can know the server uptime,
as described in (a), we can result in having to break ¢ody(1min*60sed1000ms) =15.87 ~=
16 bits.
We note that the very limited search spaof the default seed makehe brute-force approach
the easiest to mount, as it requires nepaori information regarding the server curreaptime.

57

7.3 System.Security.Cryptography.RandomNumberGenerator

http://msdn.microsoft.com/en
us/library/system.security.cryptography.randomnumbergenerator.aspx

7.3.1 Design Space

Much like in Java's JCS, .NET haswts cryptayraphic services implementation; the framework is
implemented in theSystem.Security. Cryptographgmespace.
System.Security.Cryptography.RandomNumberGeneiatan abstract classhat is the base
class for evenfRandomNumberGeneratdmplementation. Much like Java's JCS framework, here
this framework allow$uilding custom RandomNumberGenerator implementations.
The APIs rather straightforward, angrovidesthe following methods.

/I Creation methods

protected RandomNumberGenera tor();

public static RandomNumberGenerator Create();

public static RandomNumberGenerator Create(string rngName);

/I Generator access API
public abstract void GetBytes(byte[] data);
public abstract void GetNonZeroBytes(byte[] data);

O~NOUIRWN P~

Figue 31 RandomNumberGeneratoAPI

Drop-in replacement forSystem.Randomunlike in Java, where the stronger variant of tha-ra
dom generator, SecureRandomstill implements the same API as its weaker counterpgr,
va.util.Randomhere the API for the RandomNumberGeneraitmplementer is different than the
one ofSystem.Randomnd t he CLI doesn’t ©provi deThiaforges ad a j
the developer to add her owadapter methodsin order for the implementation to be drop-in
replacement forSystem.Randonmplementation.Althoughthis sounds like a minor isswee note
that this is in fact a problem that troubles developas shown if93] and we believe can even get
developers to use the weak&ystem.Randordue to thericherand more convenienfPI provided
there.

Resolving much like in Java, there are several ways to resolve a generator provideris do-
umented in[94]. The main ways are: (a) create the implementer by usinghédveoperator, (b) use
the Createmethod in the RandomNumberGeneratalass or(c) use theCreatemethod with the
explicit name of the provider A configuration exists in order to control providers by having the
algorithm names associated with the algorithm provider implementation class.

GetNonZeroBytesanother interesting observation in the API is the existence dfeparate
method is order to get random bytes that do not contain any zerdexording to[93] the only
reason for having this method is to support PKCS #1 padding for RSA encryption. We note that the
decision to have this method in the class desigrsisy. non careful user could use it instead of the
regular one, which will result in a reducedhdomness. The reduced randomness exists since we
lose abasic propertyof a random stream, which says that each bit should have an equal probability
(=1/2) of being 0 or 1n fact, here, after seeing 14 bits of 0, we can conclude in a 100% probability
that the next bitwillbe 1Si nce t hi s met hod isn’t intended tc
the properties analysisf this generator.

The provider shipped with the ClikRMicrosof * s def aul t (mplechen@mtion,y) p
System.Security.Crypgraphy.RNGCryptoServiceProvideThis implementation falls quickly to
unmanaged code to generate tlmandom values.

Implementation of the default provider by having the source code from the SSCLI, wa-ma
aged to get the implementation used in thpgovider. The implementation delegates the main
method, GetBytesto the methodCryptGenRandomSince the code path is not straightforward, we

58

http://msdn.microsoft.com/en-us/library/system.security.cryptography.randomnumbergenerator.aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.randomnumbergenerator.aspx

will continue to describe the codpath that leadsus to this conclusionGetBytess delegated to
Win32Native.Radom method, which exists invin32native.cssource file.This method is imgt
mented in thewin32 native platform DLL with an entry point BAL_RANDOMhis method has the
following signature:

1 bool Random(bool bStrong, byte[] buffer, int length);

Theparameters in this method aran output buffer, length an@ooleanflag indicating whether
it should use the strong variant. The provider invokes this method by always pagsirgvalue in
the bStrongparameter and the user supplied outpdata buffer as the buffer. The implementation
of the method exists in the native C filjn32pal.c The implementation then tries to acquire a
context to the Crypto services, by using eyptAcquireContextinction. Aftersuccessfullacqui-
ing the context the implenentation invokes th&CryptGenRandonfunction with the given buffer to
fill.

AcquiringCryptAPi the implemenation always tries to acquira handle to the CryptAPI which
is a bit redundant since in most cases we only wish to usePREBGwithout the loadingof the
entire API implementationThe implementers could have implemented it differently, as pointed in
[95]. This is not a problem pese, only a redundant memory overhead for tinmeoking application.
This is a minor overhead, since the implementation does hold the handle only once as can be seen
in thewin32pal.csource file

For completeapplicablesource code as extracted from the SSCLI, please refdr. 203

7.3.2 Under the Hood

Windows platform/version dependencewe concluded in the design section that tbenerator
uses the Windows Random Number GeneratorWWRRNG However there was anajor change b

the implementation of theWRNGduring Windows releasesrom code deompilation performed

on the DLLadvapi32.dlland rsaenh.dllon a Windows 7 32 bjplatforms (using the IDAPro disa-
sembler); it shows that the implementation si based o AES. The function is called
_AesCtrWithFipsCheckmd is implemented in thesaenh.dll This is also mentioned in the
CryptGenRandomSDN entry, which points out that from Windows Vista SP1 the implementation
uses an implementation of the AES countende based PRNG specifiedNIST Special Publication
80090 (see2.4.10.1for some details)

In Windows machinesarlier than Windows Vista SP1, tM¢RNGwas implemented using the
algorithm specified irFIPS186-2 appendix 3.1[29] construction with the use of SHA as the G
function.

The generator used is the Windows Random Number Generatgbthe time of writing thispa-
perwe are aware of only ondetaileddocumentation and analysis of tMRNQGhat was published
by Leo and Guttermafb3]. Unfortunately, their analysis was conducted on a Windows 2080 m
chine, which only has the old, FIP&5-2, generator.The WRNGanalysisis summarizedin sec-
tion 3.8.

Setting an external seedWe observethat the documentation of .NET standaRhndomNwm-
berGeneratorA P | doesn’t speci fical |l y The tdoaumentatbroel t o
CryptGenRandorfB6] states that the buffer passed actually an IN/OUT buffer anithe data it
contains is used as an auxiliary seed. This is quite confusing, as most developers would simply look
at the immediateRandomNumberGeneratéPI to checkow to give their own seed and not in the
CryptGenRandomPI. This is an enran the documentation ashownin [53]. Leofurther states
that according to the algorithm analysis, tiBufferpassed to the function iactuallytreated as if it
is empty(since we concatenate the valueto it) and therei s n’ t any coisisputd er af

59

buffer i n <obteut Eokowiegrtrastwe cohcludeK & GKSNB AayQid I|ye
external seed to the generator

We note that allowing a usetefined input toa generator is a recommended functionglitas
described in NIST 8D, secti on 7. 2, page 12: “Thi s Rrecomm
tion of a personalization string during DRBGn st ant i at i on ..

Default seedthe seed is generated from system entropy sources, in the rekey process of each
of the RC4 generators, in tlget_next_20 _rc4_bytesethod.

State as mentioned ir3.8, the state of thegeneratoris dictated by the two variablesR and
Stateand the states of the & C4generators This gets us to a state sized®f8*256=2,08&ytes.

Period similarto the WRNG the algorithm used relies on various entropy sources and utilizes
an invocation of a SHAL variant. Discus$iregperiodfor this implementation is irrelevant.

7.3.3 Properties Analysis

7.3.3.1 Pseuderandomness

As our paper tries to only discuss cipher based attanks,h i ch we don’t assume
way of accessing the machime accessing the state as a wholge do not know ofany known
cipher attack on th&VRNG We can only state that obviousute force attack over the state would
require an effort o, " ‘ * * due to the size of the internal state.

The rest of the analysis is shown in 3.8; there we show the attacks that the authf8]in
found in theWRNGmplementation.

7.3.3.2 Backward Security
See 3.8 for detalils.

7.3.3.3 Forward Security
See 3.8 for detalils.

8 deterministic random bit generator

60

8 PHP

8.1 Introduction

The following analysis is based on verstoR.3of the PHP interpreter and runtime librari¢g7]
dated 31/5/2007 The PHP engine is codamedZendand is implemented as a mixture of C and
PHP codeAll of the generators are implemented in C.

Popularity of PHPPHP is the most popul@arogramming language for server side scripting: A
cording to[98], as of November 200there were more than 19 million websites using PHR- Fu
thermore, according téhe TIOBE indel8] PHP is thd™ most populamprogramminganguage

Windows vs. Linuxsince the common scenarior deploying a PHP based application is on
Linux machines, we’ | |lofttimanaysisler thi s as the pl .

Functions availablethere are two official library PRNG functions caltedd() and mt_rand().

There is also another functioltg_value() which is used internally by the PHP engine. This function
i's also availabl e t o t hdinthesdecumentdtian Wwantleeand(iot ' s n
mt_rand()documentation.

Documentation: unlike previous languages coverd®HP's documentation doesn't state teg-
actimplementation of itsdefault PRN@and() Furthermore, thePHP documentation of the weaker
functions doesn’t state the concerns and war
cryptographic purposes.

Operating System PRNGspport unl i ke ot her | an qthe gtandard WP v e
implementationther e i sn’t a PRNG t hat a BytavbasedPRNG.Ims e r
the Zend engine implementation wileund usages of an Operating System PRiN@end engine
memory heap protectionThe implementation uses CryptGenRandom on Windows machands
/dev/urandom on supported platforms.HE source code can be viewed in the fdend_alloc.c
However these usages were sporadic tomedseofaseen’ t
for developersWe note that, mturally, the user has a wayp invoke these PRNGs, either asdea
ing from a file (under Linux) or invoking tleyptGenRandom Win32 APl methasing a PHEend
Cplugin.

Scope of analysisthis analysis will not cover several other runtime libraries which are shipped
with PHP, e.g.sqlite (which uses an RC4 based PRNG)awahssl Moreover, there isa special
library for manipulating arbitrary length numbers, called GMP and is based on the GNU GMP (Gnu
Multiple Precision Arithmetic libraryhttp://gmplib.org/). This is also not ceved in the analysis.

Like many other language engsand runtime implementationsthe PHP implementation has
different implementation for threaesafe functions (reentrant versions). The thread safe functions

in the Zend implementation are enclosed witlCadefinenamedZTSZend Thread Safepince most
deployment of PHRisethe Apache[99] webserver in prdork mode, which utilizes processes as

i solation between r equest this analsisweavill alddeacecave r t h
ingthe flavormt_rand()for future work,in an effort to keeghis work concise

Difficulty of analysisthe Zend engine is a complicategtual machineamplementation for PHP.

We used the documentation if100] asa reference readindor understanding the implementation
alongside the source code available to downldadnctions defined in Zend do not accept paeam
ters as normal functions in @The parametersaare manipulated on a speciBHP specific stackhis
caused the analysis to be far from straight forward.

61

8.2 lcg_value() PRNG
http://php.net/manual/en/function.lcgvalue.php

8.2.1 Design Space

The functionlcg_value()s implemented in thdcg.csource file and declared in thghp_Icg.hhead-
er file. The actual implementation is php_combined_lcfunction.

This generator is used in numerous places within the Zend engine codelsibissedin the de-
fault seedgenerationfor other APl generators, as can be seen in the sextions Ascan be seen
inl0itisalsoan | mportant b u sebsthn gergeration abgorikhmi n PHP’ s

APL The function doesn't expect any parameters and returns a randalore in the range of (O,
1).

8.2.2 Under the Hood

The implementation is based on the generator implenatinn introduced by L Ecuyer ja0] that
was covered in sectio@.4.3 The implementations identical to the oneshowedin [21] chapter
16.1.The documentation of the implementation doesn't refer to any of the abasreferences.

The theoretical PRNG behind it is a Combined LIEGmbines twoMLCGdy subtracting both
states.The formula follows

M.CA.:
i iz a¢é¢ @ i z1 mwmpdté g Yu

M.CG2:
i iz aé¢Q i 21 MO W X CT W

Combined M LCGs:
& i i ae ' p i i a € (/R

The source code of the generator doesn’t uUsSEée
in order to be portable betweeplatforms

Parameters:the parameters used for MLCG1 and MLCG2 are chosen in a way that guarantees
the maximal period o

Output calculatiort the output is calculated from Z by multiplyidg, by the inverse of;. The
output is calculated as follows:

1 output = & m ? q a p :a ;
2 output= £ 00O = 60 FOMLPOpP P A

Figure32 Output calculationof Z

Period L eculyer, if20] chapter 5 shows that theperiod of this generator is

z

e ec®zpm

State the state is the state of both MLCGs; each of the MLCGs holds a state variable of roughly
31 bits. This leads to a combined state siz62bits

Seed:there isy” Caii option to externally set the seed@he implementation makes sure therge
erator isseeded by setting the seed using the default seed implementation.

Default seed implementationthe default seeding algorithms seeds both MLCG® seeding
process uses time and process id inputs as the seed. The pseudo code for the initialization follows.

62

http://php.net/manual/en/function.lcg-value.php

/I I nitializing MLCG1
if (gettimeofday is available) then

WN -

c = gettimeofday(); 9

i = c.sec onds XOR NOT(c.micro -seconds);
/I NOT(c.usec) is the bitwise NOT of microseconds

else
i =1;
end

P RO~ OO B~

0 //Initializing MLCG2
1 i = getpid) ;1

Figure33 MCGs initialization algorithm

Size of the default seedwe continue to observe the &zof each of the MLCGs default seed
size.

gettimeofday function: gettimeofday puts time data in its associated struct from the Epoch
time (1/1/1970 00:00)The seconds are saved in thwe secfield and the micreseconds are saved in
the tv_usecfield and represent the amount of mictgeconds modulo 1 second, meaning the
amount of mcroseconds within thév_secvalue. Both fields use an integer to hold the valuBse
& S O 2fielR &af be up to 32 bits and thaicrosecondsfield an be up t020 bits** (on a 32 bit
machine) thisgets the v value to be32 bitsin size

Maximum number of Process IDs on a Linux platforby default Linux wraps around ther
cess identifiers when they exce@2768 . An administrator can increase this value upcto
on 32 bitsmachinesh owever it’s not common that ome wou
ber of processes to be this high. We also note that the limit per user is even lower than this value,
and defaults to 1024 (as can be seen by running the comnudindt ¢n). Following thelast note
regarding the maximum number of process IDs we can conclude that the seésdfb bits

Scoping we note that the seed of thécg_valuegenerator is globally definednd instantiated
per PHP script.his means that revealing the se&dthin a specific scripis applicable for every
invocation oflcg_valuein that script scopeThe seed is initialized with therst invocation of
Icg_value.

Entropy usethis implementationR 2 S ZagdQ@uy entropy to the generator.

8.2.3 Properties Analysis

8.2.3.1 Pseuderandomness

Assuming we knowthe implementation is based oleg_value() this gives us the informatiores
garding each MLC&hnd the factthat this algorithm is used.
Our goalis getting to the states of both generators, MLCG1 and MLGi@2e both geerators
are in fact ML CG, they don’t poses the forwar
both stateswecaneasilf r aver se forward or backwards in bo
Brute Force:a brute force attack requires going over the entire space of the djate

Oon a Windows platform we don't have native support f
has its own implementation for this for Win32. Can be seen in time.c and time.h

%In case we are in the muithreaded implementation, meaning Z&Sdefined, this would be the thread.

" The precision of this timer depends on the platform used. According to
http://stackoverflow.com/quesions/88/is-gettimeofdayguaranteedto-be-of-microseconeresolution on Intel proces-
sors the micresecond precision is guaranteed, but on some other platforms it can be as low as 16atorws.

63

http://stackoverflow.com/questions/88/is-gettimeofday-guaranteed-to-be-of-microsecond-resolution

We follow with a more efficienattackthat uses severabutputs of the subtraction, AVe note
that we ignore the final step of the outputthat gets z to be draction between (0, 1)as it iseasily
reversible We willnow show how wecan effectively reverse the subtraction and get the states of
both generators.

Known cipher text attackwe assume that we caget at least3 consecutiveoutputs from the
generator.L e twritesthe equations for 2 consecutive outputs of the generator:

z i i a€& p
Q i i a€ p
zz i zwaeQ i zooaéQ aé&Q p
z modulo: We denoted and a as the valuesefore performing the & p
modulo. Givend fx , we have foupossibilitiesfor & andd

(1) & ho
a a ph
(3)[a ha a p
@a a ph a p

Our attack will go over all those 4 possibilities,s@fm now on, moedkimi)) o mi

We note that if both MLCGs were to use the same mod{us a a), then solving(*)
and (**) to findi @& Q from a x would be simply a matter okolving two linear
tionsd € Q.

We' Il now s h @wandh(®)vio findd @<) frore & we @ in the
real situation of having different m1 and m2.

Equivalent representatiorthe equations above can be written as:

1 a b

(2) a iz MQza iz Qza4

We also get the followingequirements

m i a
@m i a
G)n i z&d Qza ©
@mn iz QVza o
(MHih ~O
By extrapolating from (1) wegeti i a , by substituting this in equation (2) we
get:
o iz MQza i a z Qza
o} i z®d Qza i zdHh a z Qza
Q Q z% Qza Qza i o ©

Finally, we extrapatei and get:

64

t

1

®w O
l | d z2Z
A simple solution of(*) and (**):f i r st we’ | | ophutodacand wal V¢
more efficientone.dor der t o s ol v e ruhdver allgpossitalities @ rF g 2 w €4
due to the four possibilitiesa hx as mentioned above),solve (1) and (2and make

sure all requirements and equalitiesitlined in (3)(7) are met.This gets us to the conclusion that
after getting twoconsecutlvesoutputs we can effectively reveal the entire state of both generator
(.,e. i andi) in an effort of z operations. From (5) and (6) weknow that Q
W we Q & soweneedto do=|= + z operations, which meaan effort of z

z . This is much better than the bruf®rce approach that would require an effort

of¢ .
Validating our solution:we are trying tofind a state of62 bitsand we have an output of 62
bits, so information theory suggests thate will haveonly a fewpossiblesolutions Soone more
output will be enoughin order to validate wich solution is the correct one; thus the use of the
third output.

A more efficient versionof solving (*) and (**) we observe thai <& ;this means that we
can safely perfornra modulo of & operation on (*)without losing informationoni . This gets us
to the following revised (*) equation:

i Q Q ® Q& z O & da¢Q
As we can see takingodulo of & removed the dependence o and weonly needto iterate
over all the possibilities fof. This gets us to needing an effort ohly

h e . Note that now we need taalculate @ ® a € '@ , which can be done
efficiently. The remalnder of the solution procedure is the same as befioee verifying (3)7) for
eachi ,i we getwhen iteratingver'Q).

I &adzyYAy3 ¢ SthaRtBeyabbue géngratas is used. If we were to allow ourselio get
3 consecutiveoutputs, then we carry and solve the equations as outlined ab@asea distinguisher
for this generator.

8.2.3.2 Backward Security
None (not entropy based).

8.2.3.3 Forward Security
Since both generatorsare MGG t hey don’ t sdouaaity propéertg.e f or war d

8.2.3.4 Default Seed Weakness

For this anal y gaettimeofdafurction ia avalable eOthenkise, the seed for the
first generator is simplg constant.

Let’' s exmauhemda rltoppw we actually Haand todenoteot h
the seeds of both generators respectively.

As in other analysis of time variants we carried throughout this papercan assume that the
seed is generated either at the startup of the application or during the first ukmo¥alue

65

v (processid): as mentioned, the actual entropy of this seed is far from the required 31 bits. It
is merely 15 bits of entropyHowever this can be reduced even more with the following observ
tions.

Linux Process ID Allocation Algorithrtitere is a ®w process ID allocation algorithim Linuxas
can be seen if101,102103. The old algorithm used to increment the proceésgsintil reaching the
/proc/sys/kernel/pid_mawalue and then wrapping aroundinding empty slots to filln an empir-
cal test,we verified thatthe new algorithmstill allocates processes in a sequentiahnner. W\
verified this in the kernel source codeersion2.6.33dated 24/2/201Q the new algorithm is used
and implemented inpid.c There are manyknown processes that are llacated during system
startup. This means that the actual entropy of thialue is even lower. By observing, for example,
an actual Linux server deploymethiat utilizes Apach¢99] as its webserver and running on Redhat
Linux[104] we sawthat almost all processaup to roughly PID=5000 are system processes. This can
serve as the attacker lower procegsbound psn. This gets us teffectiveentropy of14 bits.

sl (output of gettimeofday):as in other analyses carried aihroughout this paper, we cansa
sume that the generator was seeded close lte gpplicationstartup, and thus servestartup. If we
assumethis we can pin point the server startup to a specific day in a year, then the entropy will be
about 16 bits. Nevertleless, we still have the micigeconds within this day, which means another
20 bits.Because we xor those two numbers, and because the variable part of both of them is in the
Isb, the entropy of the xor output hasnly 20 bits Note that if another operatbon was performed
instead of xor one couldaveachieval the maximum entropy of 32 bits.

In 10 we show a concrete attack on the session ID generation in PHP that utilizes our attack on
the pseuderandomness of this generator.

66

8.3 rand() PRNG

http://php.net/manual/en/function.rand.php

8.3.1 Design $ace

The implementation of therand/srand function resides inrand.c source file and declared in
php_rand.hheader file.The implementation of the API functions is locatedpimp_rand()and
php_srandunctions.

API:the rand() function accepts twaptional parameters:min and max The function returns a
random number from the range [min, max], whereas the default values mie=0 and
max=RAND_MAX.ike in the C implementation there is a complementary seeding function called
srand The caller doesn't have mall the seeding function and the runtime makes sure the ganer
tor is initialized upon callingand. For furtherdetails regarding the seedefer to 8.3.3.2sedion.

8.3.2 Under the Hood

There isn’t a native i mplementation for the
appropriate C implementation. The resolving order follows.

Resolvingthe implementationfirst checks if the platform supports thendomfunctions fani
ly that were covered irb.4. If not found, it searches for thérand48flavorthat were covered irb.5.

If not found, it falls back to the defaultr@nd()implementationthat was covered i5.3.2*2

RAND_MAXthe RAND _MAXconstant the maximum number that the generator can return to
the user,alsodependson the flavor used: in @ndand in the reentrant flavor iis¢ , in the other
variants it is 214748364¢(p).

Seed:there is an option to externally set the seed, using shendPHP API function. The ftmn
tion uses the appropriate seeding function according to the resolving specified above.

Scoping much like in thecg_valuegenerator, the seed for theand function isgloballysaved
per PHP scrigh its own variable.

Default seed implementationithe implementation implements a default seed, regardless of
the flavor usedThe algorithm for generating the seed is defined in a macro cBEENERATE_SEED
that is definedin php_rand.h fileThe algorithm performs the following steps:

1. Time(Tsecondd - takesthe current time using théime() function. Thetime() function returns the
amount of timein secondghat had elapsed since the Epoch.

2. Process I@pid) ¢ takes the curent process ID using the gedl() function.

3. lcg_value/php_combined_Icdlcg_value)-takes a single output from thkeg_valuegenerator

that was covered i.

The output of these steps is a multiplication to yield 32 bits in the following way:

1 So =T seconas * pid * 1,000,000 * Icg_value;

Figure34 PHP rand() default seealgorithm
The size of this default seed38 bits If the random() or the rand() flavor is used, this value is
cast to an unsignednt.

8.3.3 Properties Analysis

8.3.3.1 Pseuderandomness

All properties analysisf the generatordepends on the C flavor used. The reader is encouraged to
go to theappropriatesectionsin order to read the analysis.

?In case ZTS is used, the implementation usesdahd_rimplementation.

67

http://php.net/manual/en/function.rand.php

8.3.3.2 Default Seedhnalysis

We examinehow many entropy bits we have in theefault seed.As we showed i18.2.2 the PID

has an entropy value df4 bits. Assuming we can pin poiffkecongexactly(like always-i t ° s ei t |
system startup or current time) this has no entropy. We are left with the ougiilcg_value which

can have an output of maximuB1 bits

Icg_value default seedcemembering that the default seed of theg_valueis also comprised of
the processd and time variations, we can further try and limit the entropy. Since this is the& sam
process | D, this doesn’t add entropy. Ho-wever
seconds precision using tlgettimeofdayfunction. Assuming we can know the system startup to a
precision of more than a second is too hard of an assumpfibis leaves us with the entropy of the
micro-seconds field 020 bits.

Total: adding the20 bits to the 14 bits of thd?IDyields34 bits of entropy which isreduced to
32 bitsdue to the use of a 32 bits data type.

We note thatif we were to allow oumttacker to have stronger abilities, this can easily be r
duced.As an exampldf the attacker has access to the processes that run on the machine. This can
give the attacker the knowledge of the PID.

The use ofcg_valuein the default seed generation atd yield some knowledge regarding the
Icg_valuegenerator. Considering a complex script (or a chaining of invocations between scripts)
that utilizes bothrand and thelcg_randgenerator. Since the seed of theg_randis the same b-
tween invocations in te scope of the same PHP script, getting an output fromrémel generator
can reveal data of thieg_randinner state. This ibecausehis weak flavor has no forward security,

SO we can reverse the generator and get to the initial seed. From there wéycamd get to the
Icg_valueoutput. This can potentially aid us in a different attacklog value e.g., by using this
value to invalidate a guess.

68

9 Summary and Conclusions

In thiswork we presented a detailed analysis of the pseudo random number generators in the
following programming languages: C, Java, C# and PHP.

In the introductory sections we provided the required theoretical common ground regarding
PRNGskFurthermore, ve showed oncrete examples of attacks on systems that were possible due
to problensin the underlying PRNG. By showing these examples we tried to convey the importance
of usinga well thought off,studiedgenerators(and seed generation algorithmsjth proven seo-
rity properties.

We presented a complete analysis of the PRNGs available in the above mentioned programming
languages, complete with the analysistbéir security propertiesWe demonstrate that the e+
signers of each programming languages decided onrdiitegenerators to be available to their
users. The generators span from the LCG generator to Operating System based genéfators.
provided a strict evaluation of the strength of each implementation, includim@nalysis (if appl
cable) oftheir defaultseed implementation.

During the analysis we foundmotential bug in theC# implementation othe subtractive ran-
dom number generator. The bug causes the generator to stir away from sound mathematizal the
ry and causes it to have shorter cycles tlexpected.We furthershow (in10) a concrete attack of
the session ID generation in PHP that was based on our analysis of the generator in PHP.

In summary, our ipression is that programming languag8®K designers and developers
shouldmake more detailed(and correct)documentationavailable for developeraVhere possible
they should support flavors that rely on strgreryptographic building blocks (such as theors-
mendations in the NIST 8@D standardand weltstudied ways to collect entropy for the seddt ' s
i mportant to note that most wusages of random
every developer, throughout her caer would encounter theneed to perform randomization of
some sort. Our hope is that this work could dfeguidance to her

We summarize our findings in the following table.

69

State

Langiage | Flavor Platform PRNG Entropy? | Period Size 2;;, Default Seed Security Properties
(bits) i
State Default Forward | Backward
Seed
C)
(MSVCRT rand ANSIC Windows LCG No C 31 Yes Constant C N/A No No
c Ry ¢ e
rand_s Windows | WRNG | Yes N/A 16,704 | No by C N/A between | between

(MSVCRT sources rekevina | rekevin
C (glibc) | rand *NIX Invokesthe generator in the BSD familgndom() function
C (glibc) | BSD random GO *NIX LCG No G 31 Yes Constant 0O(1) N/A No No
C (glibc) | BSD random G1 *NIX AFG No ¢ ¢ p 224 Yes Constant G N/A No No
C (glibc) | BSD random G2 *NIX AFG No ¢ C p 480 Yes Constant C N/A No No
C (glibc) | BSD random G3 *NIX AFG No ¢ C p 992 Yes Constant G N/A No No
C (glibc) | BSD random G4 *NIX AFG No ¢ C p 2,016 Yes Constant G N/A No No
C(glibc) | SVID rand48 *NIX LCG No G 48 Yes None G N/A No No
Java Random Independent | LCG No q 48 Yes Time q q'; o' | No No
Java SecureRandom P1 Windows WRNG Same as in MSVCRT rand_s

System
Java SecureRandom P2 *NIX LRNG Yes N/A 1,184 Yes entropy C Entropy S or C

P3 sources C

(LRNG)

System
Java SecureRandom P3 Independent | SHAL No q 160 Yes entropy or| ¢ Entropy| ¢ No

WRNG/LRNC(
Java SecureRandom P4 PKCS1 N/A—not covered in analysis
C# (NET)| Random Windows | LFG No N/A 1,705 | Yes | Time o(1) S(l) °"l No No
C# (NET)| RandomNumberGenerato| Windows WRNG Same as in MSVCRT rand_s
PHP lcg_value() *NIX CMCG | No C 62 No ;'ge and c No No
PHP rand() ANIX Falls back to the C implementation in the following order: BSD random, SVID rg ¢ No No

ANSIC rand

70

Mersenne

PHP mt_rand() Twister

N/A—not covered in analysis

Figure35 Analysis Summary Table

Notes regarding theummary table

1. Security Properties-the security propertie analysis is based on the analysis conducted in this paper. This means that we assume we can get
one or more outputs from the generator.

2. Platform —the platform written per each variant is the plarm that we used in the analysis. For instance, PHP is also available on Windows
machines, however we conducted the analysis only on *NIX platforms.

3.tSNA2R AYy /1 Qa { & aidsYohhelfattRiatYve &g & bl i thelanalysis (see sedi@Bf or det ail s) w
properly analyze the period of this flavor.

71

A A s o~ A A s o~

10 Appendix A:! DBl EAAQOETT | OOAAE] !DOMobatidn 11 0(080

10.1 Introduction

As PHP is mostly used as server side scripting; much like .NET, it comes with its own session
management module. Although this work’” s foc:
PRNGs in popular programmiramtjuages we alspresent here a novel anefficient attack

on the sessiond generation in PHP which uses the security analydisgofzaluecarried in

the previous section.

10.2 Session ID Allocation Algorithm

The session ID allocation algorithm in PHP is implemented in thectidn
php_session_create _ith the session.source file.

Allocating of a new sessiad is performed during the procedure of handling nevese
sions.The allocation is performed using the following steps:

1. Get theremote IP addresghat this request origiated from. The remote IP address is
obtained by looking at the value of the HTTP heaB&VIOTE_ADDR HTTP, which is
available as standard execution environment information
(http://php.net/manual/en/reserved.variables.server.phpin case the header does not
exist, an empty string is used.

Get theseconddfield of gettimeofday

Get themicro-seconddield of gettimeofday

Get asingle output from the PRNGenerator php_combined_Icghat was initialized
with the default seedwhich is the geneator we covered irD. The value is taken as a
string after multiplying the result by 10 and taking 8 places after the decimal dot. This
effectively yields 9 digits.

5. Mix the concatenation of the above inputs usiaghash function, which can be either

SHA1 or MD5. Thaefault is MD5

All the outputs in steps-# are converted to string values usiggrintf. The input buffer
to the hash function is therefore a char array. Assuming the default MD5 function is used,
the resultis 128 bits sessiom, which is converted to 32 ASCII characters.

Support for external entropy filethere is support for giving external entropy to the
process, which is supplemented to the sources in stegsak another input to the hash
function. The support is by specifying a value to the &egsion.entropy_filevhich is an
entropy file source andession.entropy_lengtivhich is the amount of entropy to read from
the file during the allocation process. One can use this setting by pointing it to
/dev/[u]random for instance. The configuration is done by configuring these values in the
php.ini runtime nfiguration file. ¢ KSNBE Aay Qi |yé& R&flsaz 0 Syl
sion.entropy_lengtldefaults to 0 in the defaulPHP runtime configuration (as documented
in http://php.net/manual/en/sessio.configuration.php. We do note that the implemeat
tion readsMIN (2048, session.entropy_lengthytes from the entropy file during the allae
tion process.

Following this, in the next analysis, we assume no external entropy source was d
fined.

In the nexttwo sections we outline our attack on the session id allocation algorithm of
PHP. Our attack is comprised of two steps: (a) Finding out the state of the generator using

hwn

72

http://php.net/manual/en/reserved.variables.server.php
http://php.net/manual/en/session.configuration.php

some guess work and the attack we showed on the generator in the previous section, (b)
utilizing the attack to effectively hijack a valid sessitn

Entropy injection during the allocation processie note that the session id allocation
algorithm is well thought and the BRNGel oper s
allocate the sessioid (like we saw irf42]). This can be seen in steps31the algorithm
injects more entropy to the session id generation process, besides from the entropy of the
PRNG itself.

10.3 Extracting the state of the generator

The attack requires getting 3 consecutive valid sesglerfrom the serverAs we '’ | | sho
the effort required for e X, twhic can benaghieveth usingg e ner
today’ s moderate machines.
We denote X, as the buffer generated by steps4dandwe ' | | the sessmiidegen-
erated from this buffer usinf(X,), which isthe invocation of the hash function. We assume
that the default hash function, MD5 is useldowever, ve note that using SHAd o e s n’ t
affect our attackat all. We further denote a$(%) the state of the generatog whose ou-
put was used in step 4.
The extraction attack outlinefollows: First, we perform 3consecutive querieso the
server in order to get 3 valid sessias, f(X;), (%) and f(Xg). Since we get valid sesstals
originating from our machine, the remot®ddressaddsn o entropy, as it 1i's
ourma c h ilR).&0 the only entropgomes from the time parametersye’ bolund it and
show that the spacefox,is small enoughNext, we perform an exhaustive search to fiXg
from (), % from (%) and Xg from f(Xg). From theX; X, Xs we just foundwe get thecorre-
sponding 3 outputs of the generatdfinally, we extract the stateS¢a) S¢k). S&s) using the
method outlined in sectio®.2.3.1 We use the third output to validate our finding.
We ’ | | now describe the attack in more det a
Guessing X we follow with a detailed analysis of how many bits we need to guess in
order to get toX,.
1. Remote Address-as mentioned, we know this value.
2. Time (seconds} we assume that the sessiallocation procedure is one of the first
operations that the server performfollowing a request. This assumption makes sense,
as the sessioid is probably needed in order to perform operations within the agplic
tion. We further assume that we have the means to know the time of the server, to a
seconds’ a c c ur aimtyof thearegdest hamdding timedselesd thane s
cond. This is reasonable if we consider a use of NTP by the server or getting the server
time using other methods outlined in this paper. This means we IBagatropy from
this parameter.
3. Time (micrasecords)—we denoteTmicoas the upper limit of the uncertainty, in micro
seconds, we allow ourselves to have regarding the time of the operation. This means
that we need to gues®g, (Tmicro) bits. We assume that in some conditions we can guess
the time up to 5 milliseconds. This gives us an upper limibgf (5,000) ¢ 12 bits
This follows an assumption that that the server would take up to 1 msec to perform the
actual sessiofd allocation from the instant the request reaches the server. Tl a
sumption of network latency uncertainty is actuali3nsec; this is from empirical data
we gathered.
4. DSy S NI G 2 NEepaindhgnuisddeés that the output of the generatorigraction
between(O , 1) and the algorithm in step 4 tak

73

put, we need to take into account rounding issues. Dergpsilon4.656613€l0, z —

the real generator’s out put -a dfferenbgemea- mul t i p

t osroutput that resulted in the sameutput that was taken in the algorithm. By axa

ining the maximum difference between the two candidates, we see that we would need

to test 3 situations. This follows from this observation:
z,z ¢o to the same value aftéhe truncation =>
The corresponding fraction (before the truncatiomijl be the same up to the™digit =>
epsilon*|z-z ' p|nt <
|z—-z ' p|mt/epsilon
|z-z ' p|nt *4.656613el0
|z-z" | < 2

So there are at most 3 possibilities for tgenerator output given the truncated fca
tion.

To concludeX, has only 43 unknown bits, 12 from the microseconds and 31 from the
generator output.

Extraction of the generator stateeffort: following the observations above, given an
output f(X) we would need to perform a search over a spate tofindX(we ' | Ir- enu me
ate all theg¢). Since we do it for the three consecutive outputge get an efforiof oz ¢

Now, In order to get toS(X) we now need to mount the attack we outlined 2.3 the
effort we needed there was ¢ . Remembering that due to rounding issues we actually
need to perform this 3 times peX, yields an effort ooz ¢ per X,. Since we perform the
attack for twoX, and the third one is only used for verification gets us to a final effort of:

o ocXX e

Notes regarding attack assumptions and vectors

1. Consecutive outputg we are aware of the problematic assumptiohgetting conseg-
tive outputs. We note that if we allow ourselves to only know the distance (amount of
session ids generated) between the outputs we could tsyilto mount the attack above
(In Attack 1 described in the nexectionw e l’show a practial way to do so)However
this might yield a more expensive attack to get the state of the generator, sincefthe e
fort would not beg , butt z ® ¢ , wherek is the amount of invocation/distance
between the first two outputsand® is the same as shown th Another possible rebe:
ation is toassumethat we can bound the distance between the sessigs. E.g., if we
were to know that we gethe three sessions in a range of 1000 sessions, and then we
can say that we have 1000 options for the difference betwk&) andf(X;) and anoh-
er 1000 forf(X) andf(Xg), thus getting 1,000,000 options.

2. Attack the initial seed of the generator we note that breaking the initial seed is still
applicabl e; h o we v Bue toithe fac thawe Wwill neesl tolkrw oW i c i a l
many invocations took place after it was generatedget ourselves synched with the
current state of the generator

10.4 Mounting the Session Hijacking Attack

Il n the previous section we’ve managed to ge
entropy is added to the generator itself and it poses no forward security we can new tra
erse to older or newer states as we plea¥ée now continue to describe 3 online attacks

74

that would allow us to get to a valid sessimhof a user and thus hijacking her session. The
attacks are presented in a decreasing strength we allow our attacker to possess.

For the sake olfdencteeveastineiatacker @andobwasethel attacked
user, whose session we hijack.

Attack 1:assumingeveis a passive MM (man in the middle)thus she carmpassively
listen to all the traffic of the serverin order to make the attack scenario realistitd non
trivial, we further assume that the communication of the server is encrypted using https
[105].

Sinceevelistens to the traffic, she knows the originating IP (from a lower level protocol)
of eat request and the timing of the requesstb a millrsecond precision.

Denote the session expiry timeout time &spi, €vemonitors the traffic of the server
for Texpiry @nd keeps track of the originating IPs for the requests during this period. After
TexpryeVea s sumes that each new request from an |
the server for T,piryresulted in creation of a new sessiah

evethen requests 3 valid sessiis from her own machine and mounts the attack we
described in therevious section to reveal the internal state of the PRNG. While mounting
the attackevecontinues to keep track on the amount of new sessig created(note that
even if the outputs are not consecutive eve knows the amount of PRNG executions)

Now eve continues to monitor the traffic of the server archoosesa new sessioid,
Sidyp that was created to her likingeve knows how many invocations of the PRNG were
performed (amount of new sessiatnds cr eated) since the ti me s
state. Furthermoreeve knows the time of Sid, to milli-second accuracy. The oniyn-u
known is the exact time of micssecond, within this milsecond that Sig,was created. To
solve thisevetries 1000 values of micrseconds to generate 1000 potentsdssioAds and
sends to the server for validation. One is expected to be a valid sessiarhich is the
attack goal.

The above attack has a weakness that the server can suspect that an attddbtors
session, actuallyp 2 OIR address, undergoes amdn decide to stop serving requests to
bob. To avoid this, we cdarther improve our attackas follows

evewon't attack a specific user, but iinstea:
created by the server, say in 1000 seconds. As described afooweach such session ere
tion the only uncertainty is in the exact creation time, which is in the order of 1000 micro
seconds. So to achiewane validsessioAd d i t ' s ewerooitargté ovelr the 1000
sessionids, guess the exact time of each sessd creation, construct a sessiod accod-
ingly and try to validate it by sending it to the serverekpectancethis will yield asingle
valid sessiond.

This variation hagvo main advantages (a) we only send one invalid cookie |feked)
IPsoour attack is more concealeh) in the previous scheme the server could protect itself
from the attack by simply blocking the attacked IP (and by doing that the server will also be
protected from our attack if we are attacking from several machinesyveier in this vaa-
tion the server doesn't know whickessionid we are going to attack, thus makingniuch
harder for the server to protect itself.

Note: we assumed that we can monitor the number of sessascreated (and coe-
spondingly, number oPRNG advancing) by listening to the secured https communication
and following all the IPs of this communicatiokisingan IP from a lower level protocah
order to keep track of users that ateehind a proxy/NATcan be problematicsince the IP
sent woutl be of the NAT/proxy and not the actual us&his can be solved by using info

75

mation regarding sidehannels of HTTPS recently covered by SchmeighO6] regarding

the paper[107]. For instance, wean assume users that reach the homepage or login page
would get a new session id. By using sitl@nnels we can try and deduce that indeed the
user is viewing the mentioned pages.

Note: as mentioned abee, involving the serveii sn’t t he best way to
since the server can easily understand that an attack is performing and could delay r
sponses or completely block our IP. Nevertheless, we expect that most applications
woul dn’ t guble df thesds tpreeauttoms and even if they will, we can always
mount the attack from multiple machines, in order to conceal our attack.

Attack 2:assumingevecanonly passively listen to all the traffleetween the serverand
bob. The attack is similar to the attack proposed before; however we now have am-unce
tainty regarding the amount of new sessiats issued by the server.

Number of session idsin order to try and predict the number of invocationSen
sessions W€ Will makean educated guess and involve the server in validating our guess. Our
guess will be based on the assumption of the average amount of new sessions in a specific
time frame. This assumption is application specific, as it translates from the expected load
of a specific website. We will denote the lower bound of this gueds,@Ssessions' ' and the
upper bound a$|nur’n-sessi0ngnax

As before, we still have an uncertainty of 1000 misezonds regarding the exact time
of the session id creatiotMounting theattack requires iterating over the values of 1000 *
(Nnumsessions . = Nnumsessions') and handing the constructed sessiinis to the server for
validation.

Attack 3:the only assumption regardingveis that she carnteract with the server As
expectal this attack requires the largest amount of guess work and interaction with the
server in order to validate our guess.

Her e we d oontréte IRnmoroder weaknow of a valid IP. Nevertheless, vee o

serve thatt he i mpl ement ation only takes the REMO
X _FORWARDED_FOR headglkich is dad practice that causes a weakness in the system

that the attacker can exploit as follows.f f ect i vel vy, i f the wuser 1is
address will be sent as the REMOTE_ADDR. A lot of traffic is generated from parties behind

a proxy server, mai nly for organizations. E
REMOTE_ADDR header, thus yielding in an empty string for this parameter. Wenean
clude that for practical attacks, this 1isn’t

empty REMOTE_ADDR values for scenarios that
big corporation by getting its proxy’'s | P ad
From here on theattack continues exactly like described in Attack 2, by bounding the
sessionid exact creation time.
In conclusionwe showed concrete examples of attacks on the sesglageneration in
PHP that rely on the fadhat not enough entropy is being injectetlhen generating new
sessionsidnd t hat we can relatively easily break
We note that in order to validate if we got a valid sessidrve simply use some indie
tion within the application, e.g., seeing the useme or a shopping carfhis validation
step is important ag®HP simply generates a new sessubiincase the sessiaid it got is
invalid.

76

11 Appendix B: Code Snippets

11.1 Java

11.1.1 Java:;SecureRandom

11.1.1.1perm_table

56,30, -107, -6, -86,25, - 83, 75, -12, -64,

5, -128,78, 21, 16, 32, 70, - 81, 37, - 51,

-43, -46, -108, 87,29, 17, - 55, 22, -11, -111,
- 115, 84, - 100, 108, -45, -15, -98,72, -33, -28,
31, -52, -37, -117, -97, -27,93, - 123, 47, 126,
-80, -62, -93, -79,61, -96, -65, -5, -47, -119,
14, 89, 81, - 118, -88, 20, 67, -126, -113,60,

- 102, 55, 110, 28, 85, 121, 122, - 58, 2, 45,

43,24, -9,108, - 13, 102, -68, -54, -101, -104,
19,13, -39, -26, -103,62,77,51, 44, 111,

73,18, -127, -82,4, -30, 11, -99, -74, 40,
-89,42, -76, -77, -94, -35, -69, 35,120, 76,

33, -73, -7,82, -25, -10,88, 125, - 112, 58,

83, 95, 6, 10, 98, - 34, 80, 15, - 91, 86,

-19,52, -17,117, 49, - 63, 118, - 90, 36, - 116,
-40, -71,97, -53, -109, -85, 109, - 16, -3, 104,
- 95, 68, 54, 34, 26, 114, -1, 106, -121, 3,

66, 0, 100, - 84, 57, 107, 119, -42,112, - 61,

1,48, 38,12, -56, -57,39, -106, -72,41,
7,71, -29, -59, -8, -38,79, -31,124, - 124,

8, 91, 116, 99, -4,9, -36, -78,63, - 49,

-67, -87,59,101, - 32,92, 94, 53, -41, 115,
-66, -70, -122,50, -50, -22, -20, -18, -21,23,
-2, -48,96, 65, - 105, 123, -14, -110, 69, - 24,
-120, -75,74,127, - 60, 113, 90, - 114, 105, 46,

27, -125, -23, -44,64

11.2 .NET

11.2.1 System.Random (Random.cs)
The following is the code of tHeystem.Randomlass as generated by the Reflector.

/| ==++==

1

1

/[Copyright (c) 2006 Microsoft C orporation. All rights reserved.
1

/I The use and distribution terms for this software are contained in

the file

/I named license.txt, which can be found in the root of this

distribution.

/I By using this software in any fashion, you are agre eing to be bound
by the

/I terms of this license.

1

/['You must not remove this notice, or any other, from this software.
I

1
== = ==
/*

** Class: Random
*%

*%

** Purpose: A random number generator.
%

*%

77

*/

namespace System {

using System;
using System.Runtime.CompilerServices;
using System.Globalization;
[System.Runtime.InteropServices.ComVisible(tr ue)]
[Serializable()] public class Random {
I

/Il Private Constants

I

private const int MBIG = Int32.MaxValue;
private const int MSEED = 161803398;
private const int MZ = 0;

I

/l Member Variables

I

private int inext, inextp;

private int[] SeedArray = new int[56];

1l
/l Public Constants
1l

I
/I Native Declarations
I

I
/I Constructors
I

public Random()
: this(Environment.TickCount) {

public Random(int Seed) {
int ii;
int mj, mk;

/lInitialize our Seed array.
/[This algorithm comes from Numerical Recipes in C (2n d Ed.)
mj=MSEED - Math.Abs(Seed);
SeedArray[55]=mj;
mk=1;
for (int i=1; i<55; i++) { //Apparently the range [1..55] is
special (Knuth) and so we're wasting the 0'th position.
il = (21*1)%55;
SeedArray[iil=mk;
mk=mj - mk;
if (mk<0) mk+=MBIG;
mj=SeedArrayf[ii];

}
for (int k=1; k<5; k++) {
for (int i=1; i<56; i++) {
SeedArrayl[i] - = SeedArray[1+(i+30)%55];
if (SeedA rray[i]<0) SeedArray[i][+=MBIG;
}

inext=0;
inextp = 21;
Seed =1;

}

1
/I Package Private Methods
I

78

Sample

**Action: Return a new random number [0..1) and reSeed the Seed

array.
**Returns: A double [0..1)
*Arguments: None
**Exceptions: None
====%*/ -
protected virtual double Sample() {
/lIncluding this division at the end gives us significantly
improved
/frandom number distribution.
return (InternalSample()*(1.0/MBIG));
private int InternalSample() {
int retval,
int locINext = inext;
int locINextp = inextp;
if (++locINext >=56) locINext=1;
if (++locINextp>= 56) locINextp = 1;
retVal = SeedArray[locINext] - SeedArray[locINextp];
if (retVal<0) retVal+=MBIG;
SeedArray[locINext]=retVal;
inext = locINext;
inextp = locINextp;
return retVal;
}
I
// Public Instance Methods
1
I* Next===
______ *Returns: An int [0..Int32.MaxValue)
*Arguments: None
**Exceptions: None.
S ===
public virtual int Next() {
return InternalSample();
}
private double GetSampleForLargeRange() {
/I The distribution of double v alue returned by Sample
/I is not distributed well enough for a large range.
/I'If we use Sample for a range [Int32.MinValue..Int32.MaxValue)
/I We will end up getting even numbers only.
int result = InternalSample 0;
/I Note we can't use addition here. The distribution will be bad
if we do that.

bool negative = (InternalSample()%2 == 0) ? true : false; //

decide the sign based on second sample

if(negative) {

79

result = - r esult;

double d = result;

d += (Int32.MaxValue - 1);// getanumberinrange[0..2*
Int32MaxValue - 1)
d /= 2*(uint)Int32.MaxValue - 1;
return d;
[* Next===
**Returns: An int [minvalue..maxvalue)
*Arguments: minValue -- the least legal value for the Random
number.
*x maxValue -- One greater than the greatest legal return
value.
**Exceptions: None.
====*/ a

public virtual int Next(int minValue, int maxValue) {
if (minValue>maxValue) {

t hrow new
ArgumentOutOfRangeException("minValue",String.Format(Culturelnfo.CurrentCu
lture, Environment.GetResourceString("Argument_MinMaxValue"), "minValue",
"maxValue"));

long range = (long)maxValue - minValue;
if(range <= (long)Int32.MaxValue) {
return ((int)(Sample() * range) + minValue);

else {
return (int)((long)(GetSampleForLargeRange() * range) +
minValue);

k=== = Next

**Returns: An int [0..maxValue)
*Arguments: maxValue -- One more than the greatest legal return

value.
**Exceptions: None.

====%*

public virtual int Next(int maxValue) {
if (maxValue<0) {
throw new ArgumentOutOfRangeException("maxValue",
String.Format(Culturelnfo.CurrentCulture,
Environment.GetResourceString("ArgumentOutOfRange_MustBePositive"),
"maxValue"));

return (int)(Sample()*maxValue);

& Next===

**Returns: A double [0..1)
*Arguments: None
**Exceptions: None

80

====*/
public virtual double NextDouble() {
return Sample();

}

* NextBytes

**Action: Fills the byte array with random bytes [0..0x7f]. The
entire array is filled.

**Returns:Void

*Arugments: buffer -- the array to be filled.

**Exceptions: None

====*/
public virtual void NextBytes(byte [] buffer)
if (buffer==null) throw new ArgumentNullException("buffer");
for (int i=0; i<buffer.Length; i++) {
buffer[i]=(byte)(InternalSample()%(Byte.MaxValue+1));

}

11.2.2 System.Security.Cryptography. RNGCryptoServiceProvider
erviceprovider.cs)

(rngcrypts-

/| ==++==

1

1

/I Copyright (c) 2006 Microsoft Corporation. All rights reserved.
1

/I The use and distribution terms for this software are contained in
the file

/I named license.txt, which can be found in the root of this
distribution.

/I By using this software in any fashion, you are agreeing to be bound
by the

/I terms of this license.

1

/['You must not remove this notice, or any other, from this software.
1

1

===

I
/I RNGCryptoServiceProvider.cs
I

namespace System.Security.Cryptography {
using Microsoft.Win32;
using System.Runtime.InteropServices;

[System.Runtime.InteropServices.ComVisible(true)]
public sealed class RNGCryptoServiceProvider : RandomNumberGenerator {

I
I/ public constructors

public RNGCryptoServiceProvider() { }

81

I
// public methods
I

public override void GetBytes(byte[] data) {
if (data == null) throw new ArgumentNullException("data");
if ('Win32Native.Random(true, data, data.Length))
throw new
CryptographicException(Marshal.GetLastWin32Error());
}

public override void GetNonZeroBytes(byte[] data) {
if (data == null)
throw new ArgumentNullException("data");

GetBytes(data);

int indexOfFirstOByte = data.Length;
for (inti=0;i<data.Le ngth; i++) {
if (data[i] == 0) {
indexOfFirstOByte = i;
break;

}
}
for (int i = indexOfFirstOByte; i < data.Length; i++) {

if (data[i] != 0) {
data[indexOfFirstOByte++] = datali];

}

while (indexOfFirstOByte < data.Length) {
/I this should be more than enough to fill the rest in one

iteration
byte[] tmp = new byte[2 * (data.Length -
indexOfFirstOByte)];
GetBytes(tmp);
for (inti=0; i< tmp.Length; i++) {
if (tmpl[i] '= 0) {
data[indexOfFirstOByte++] = tmpl[i];
if (indexOfFirstOByte >= data.Length) break;
}
}
}
}
}
}

11.2.2.1Microsoft.Win32 (win32natives.cs)
Here are only the applicable parts of the code, not the entire class code:

[Dllimport(KERNEL32, EntryPoint="PAL_Random")]
[ResourceExposure(ResourceScope.None)]
internal extern static bool Random(bool bStrong,
[Out, MarshalAs(UnmanagedType.LPArray)] byte[]
buffer, int length);

11.2.3 win32pal.c
Here are only thepplicable parts of the code, not the entire code:

PALIMPORT
BOOL
PALAPI
PAL_Random(
IN BOOL bStrong,

82

IN OUT LPVOID IpBuffer,
IN DWORD dwLength)

BOOL Ret;
HCRYPTPROV hProv;

PERF_ENTRY(PAL_Random);
LOGAPI("PAL_Rand om(bStrong=%d, IpBuffer=%p, dwLength=0x%X) \n",
bStrong, IpBuffer, dwLength);

if (hCryptProv == NULL)

Ret = CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA_ FULL,
CRYPT_VERIFYCONTEXT);

if ('Ret)
goto LEXxit;

if (InterlockedCompareExchangePointer((PVOID*)&hCryptProv,
(PVOID)hProv, NULL) !'= NULL)

/I somebody beat us to it
CryptReleaseContext(hProv, 0);

}
Ret = CryptGenRandom(hCryptProv, dwLength, IpBuf fer);

LExit:
LOGAPI("PAL_Random returns BOOL %d \ n", Ret);
PERF_EXIT(PAL_Random);
return Ret;

}

11.3 *NIX C

11.3.1BSD

Configuration of PRNG variant3he TYPE_@s a special type- it falls back to using LCG as
the PRNG. Each type uses a different polymbrtactually trinomial). The following ied
fined per type: (1 BREAK (wherei = 1..5 - the minimum amount of state information (in
bytes), from which this type (trinomial) is used, PBG i- the degree of the trinomial
used (3)SEP_+the separaion between the two lower order of coefficients of the trinem
al, meaning the separation betwedptr andrptr. The types are defined as bellow:

/* Linear congruential. */

#define TYPE_O 0
#define BREAK_0O 8
#define DEG_0O 0
#define SEP_O 0

[* X**T7 + x* *3+ 1. %

#define TYPE_1 1
#define BREAK 1 32
#define DEG_1 7

#define SEP_1 3
[*x**15 +x + 1. */

#define TYPE_2 2
#define BREAK_2 64
#define DEG_2 15
#define SEP_2 1

[* x**31 + x**3 + 1. */

#define TYPE_3 3
#define BREAK 3 128

83

#define DEG_3 31

#define SEP_3 3

[* x**63 + x + 1. */

#define TYPE_4 4
#define BREAK 4 256
#define DEG_4 63
#define SEP 4 1

LCG code for TYPE_O in the BSD variant:

int32_t val = state[0];
val = ((state[0] * 1103515245) + 12345) & Ox7fffffff;

Generator code of th AFG generatorgielowis the code snippet of this algorithm: (line
383405, random_r.c)

int32_t *fptr = buf - >fptr;

int32_t *rptr = buf - >rptr;

int32_t *end_ptr = buf - >end_ptr;
int32_t val;

val = *fptr += *rptr;
[* Chucking least random bit. */

*result = (val >> 1) & Ox7fffffff;
++fptr;
if (fptr >= end_ptr)

fptr = state;

++rptr;
else

++rptr;

if (rptr >= end_ptr)

rptr = state;

}
buf - >fptr = fptr;
buf - >rptr = rptr;

The LCG that is used in the seed initialization process is in the follewipget (line
192-201,random_r.c)

[* This does:
state[i] = (16807 * state]i - 1]) % 2147483647;
but avoids overflowing 31 bits. */

long int hi=word/127773;

long int lo=word % 127773,

word = 16807 * lo - 2836 * hi;

if (word <0)

word += 2147483647;

11.3.2 SVID
drand structure

struct drand48 data

{
unsigned short int __ x[3]; [* Current state. */
unsigned short int _ old x[3]; /* Old state. */
unsigned shortint __ c; /* Additive const. in congruential formula.
*/
unsigned short int __init; /* Flag for initializing. */
unsigned long long int __a; /* Factor in congruential formula. */
b

84

The LCG implementation can be seen in the functiodrand48 _iterate the code fd-
lows:

int

__drand48_iterate (xsubi, b uffer)
unsigned short int xsubi[3];
struct drand48_data *buffer;

uinté4_t X;
uint64 _t result;

/* Initialize buffer, if not yet done. */
if (__builtin_expect (!buffer ->_ init, 0))

buffer -> a = 0x5deece66dull;
buffer ->_c¢ = 0Oxb;
buffer ->_init=1;

}

/* Do the real work. We choose a data type which contains at least
48 bits. Because we compute the modulus it does not care how
many bits really are computed. */

X = (uint64_t) xsubi[2] << 32 | (uint32_t) xsubi[1] << 16 | xsubi[0];

result = X * buffer -> a+ buffer -> ¢

xsubi[0] = result & Oxffff;

xsubi[1] = (result >> 16) & Oxffff;

xsubi[2] = (result >> 32) & Oxffff;

return O;

85

12 Appendix C: Configuration Files

12.1 java.security default security file configuration

Below we can see the default configuratitas taken from a Windows JDK installatitmt
is shipped with the java JRE and JDK. The applicable keys are highlighted in red; these keys
are used for the®?RNGeneration algorithms.

#

This is the "master security properties file".

#

In this file, various security properties are set for use by

java.security classes. This is where users can statically register

Cryptography Package Providers ("providers" for short). The term
"provider" refers to a package or set of packages that supply a

concrete implementation of a subset of the cryptography aspects of

the Java Security API. A provider may, for example, implement one or

more digital signature algo rithms or message digest algorithms.
#

Each provider must implement a subclass of the Provider class.

To register a provider in this master security properties file,

specify the Provider subclass name and priority in the format

#

security.provid er.<n>=<className>
#

This declares a provider, and specifies its preference

order n. The preference order is the order in which providers are

searched for requested algorithms (when no specific provider is

requested). The orderis 1 - based; 1 is the most preferred, followed
by 2, and so on.

#

<className> must specify the subclass of the Provider class whose
constructor sets the values of various properties that are required

for the Java Security API to look up the algorithms or other

facili ties implemented by the provider.

#

There must be at least one provider specification in java.security.

There is a default provider that comes standard with the JDK. It

is called the "SUN" provider, and its Provider subclass

named Sun appears in th e sun.security.provider package. Thus, the
"SUN" provider is registered via the following:

#

security.provider.1=sun.security.provider.Sun
#

(The number 1 is used for the default provider.)

#

Note: Providers can be dynamically registered instead by calls to
either the addProvider or insertProviderAt method in the Security

class.

#
List of providers and their preference orders (see above):

security.provider.1=sun.security.provider.Sun
security.provider.2=sun.security.rsa.SunRsaSign

securi ty.provider.3=com.sun.net.ssl.internal.ssl.Provider
security.provider.4=com.sun.crypto.provider.SunJCE
security.provider.5=sun.security.jgss.SunProvider
security.provider.6=com.sun.security.sasl.Provider
security.provider.7=org.jcp.xml.dsig.internal.dom.XM LDSigRI
security.provider.8=sun.security.smartcardio.SunPCSC
security.provider.9=sun.security.mscapi.SunMSCAPI

#

Select the source of seed data for SecureRandom. By default an

attempt is made to use the entropy gathering device specified by

the sec urerandom.source property. If an exception occurs when
accessing the URL then the traditional system/thread activity

86

algorithm is used.

#
On Solaris and Linux systems, if file:/dev/urandom is specified and it
exists, a special SecureRandom implementation is activated by default.

This "NativePRNG" reads random bytes directly from /dev/urandom.

#

On Windows systems, the URLSs file:/dev/random and file:/dev/urandom
enables use of the Microsoft CryptoAPI seed functionality.

#

securerandom.s ource=file:/dev/urandom

#

The entropy gathering device is described as a URL and can also

be specified with the system property "java.security.egd". For example,

- Djava.security.egd=file:/dev/urandom

Specifying this system property will override the securerandom.source
setting.

#

Class to instantiate as the javax.security.auth.login.Configuration
provider.

#
login.configuration.provider=com.sun.security.auth.login.ConfigFile
#

Default login configuration file

#

#login.config.url.1=file: ${user.home}/.java.login.config
#

Class to instantiate as the system Policy. This is the name of the class
that will be used as the Policy object.

#

policy.provider=sun.security.provider.PolicyFile

The default is to have a single system - wide policy file,
and a policy file in the user's home directory.
policy.url.1=file:${java.home}/lib/security/java.policy
policy.url.2=file:${user.nome}/.java.policy

whether or not we expand properties in the policy file

if this is set to false, properties (${ ...}) will not be expanded in
policy

files.

policy.expandProperties=true

whether or not we allow an extra policy to be passed on the command line

with - Djava.security.policy=somefile. Comment out this line to disable
this feature.
policy.allowSyst emProperty=true

whether or not we look into the IdentityScope for trusted Identities
when encountering a 1.1 signed JAR file. If the identity is found

and is trusted, we grant it AllPermission.
policy.ignoreldentityScope=false

#

Default keystore type.

#

keystore.type=jks

#

Class to instantiate as the system scope:

#

system.scope=sun.security.provider.ldentityDatabase

#

List of comma - separated packages that start with or equal this string

will cause a security exception to be thrown when
passed to checkPackageAccess unless the

87

corresponding RuntimePermission ("accessClassinPackage."+package) has
been granted.
package.access=sun.,com.sun.xml.internal.ws.,com.sun.xml.internal.bind.,co
m.sun.imageio.

#

List of comma - separated packages t hat start with or equal this string
will cause a security exception to be thrown when

passed to checkPackageDefinition unless the

corresponding RuntimePermission ("defineClassinPackage."+package) has
been granted.

#

by default, no packages are re stricted for definition, and none of
the class loaders supplied with the JDK call checkPackageDefinition.

#

#package.definition=

#

Determines whether this properties file can be appended to

or overridden on the command line via - Djava.security.prope rties
#

security.overridePropertiesFile=true

#

Determines the default key and trust manager factory algorithms for
the javax.net.ssl package.

#

ssl.KeyManagerFactory.algorithm=SunX509
ssl.TrustManagerFactory.algorithm=PKIX

#
The Java -level namelookup cache policy for successful lookups:
#

any negative value: caching forever
any positive value: the number of seconds to cache an address for
zero: do not cache

#
default value is forever (FOREVER). For security reasons, this
caching is made forever when a security manager is set. When a security

manager is not set, the default behavior is to cache for 30 seconds.
#

NOTE: setting this to anything other than the default value can have

serious security implications. Do not set it unless
you are sure you are not exposed to DNS spoofing attack.

#

#networkaddress.cache.ttl= -1

The Java - level namelookup cache policy for failed lookups:

#

any negative value: cache forever

any positive value: the number of seconds to ¢ ache negative lookup
results

zero: do not cache

#

In some Microsoft Windows networking environments that employ

the WINS name service in addition to DNS, name service lookups

that fail may take a noticeably long time to return (approx. 5 seconds).
For this reason the default caching policy is to maintain these

results for 10 seconds.

#

#

networkaddress.cache.negative.ttl=10

#
Properties to configure OCSP for certificate revocation checking
#

Enable OCSP
#

88

By default, OCSP is not used f or certificate revocation checking.
This property enables the use of OCSP when set to the value "true".
#

NOTE: SocketPermission is required to connect to an OCSP responder.
#

Example,

ocsp.enable=true

#

Location of the OCSP responder

#

By default, the location of the OCSP responder is determined implicitly
from the certificate being validated. This property explicitly specifies

the location of the OCSP responder. The property is used when the

Authority Information Access extension (defined in RFC 3280) is absent
from the certificate or when it requires overriding.

#

Example,

ocsp.responderURL=http://ocsp.example.net:80

#
Subject name of the OCSP responder's certificate
#

By default, the certificate of the OCSP responde r is that of the issuer
of the certificate being validated. This property identifies the

certificate

of the OCSP responder when the default does not apply. Its value is a

string

distinguished name (defined in RFC 2253) which identifies a certificate

in

the set of certificates supplied during cert path validation. In cases

where

the subject name alone is not sufficient to uniquely identify the

certificate

then both the "ocsp.responderCertlssuerName" and

"ocsp.responderCertSerialNumber" prope rties must be used instead. When
this

property is set then those two properties are ignored.

#

Example,

ocsp.responderCertSubjectName="CN=0OCSP Responder, O=XYZ Corp"

#

Issuer name of the OCSP responder's certificate

#

By default, the certifica te of the OCSP responder is that of the issuer

of the certificate being validated. This property identifies the

certificate

of the OCSP responder when the default does not apply. Its value is a

string

distinguished name (defined in RFC 2253) which identifies a certificate
in

the set of certificates supplied during cert path validation. When this

property is set then the "ocsp.responderCertSerialNumber" property must
also

be set. When the "ocsp.responderCertSubjectName" property is set then
t his

property is ignored.

#

Example,

ocsp.responderCertlssuerName="CN=Enterprise CA, O=XYZ Corp"
#

Serial number of the OCSP responder's certificate

#

By default, the certificate of the OCSP responder is that of the issuer
of the certificat e being validated. This property identifies the
certificate

89

of the OCSP responder when the default does not apply. Its value is a

string

of hexadecimal digits (colon or space separators may be present) which

identifies a certificate in the set of cer tificates supplied during cert
path

validation. When this property is set then the
"ocsp.responderCertlssuerName"

property must also be set. When the "ocsp.responderCertSubjectName"
property

is set then this property is ignored.

#

Example,

ocsp .responderCertSerialNumber=2A:FF:00

90

13 Bibliography

[1] Donald E Knutiseminumerical Algorithm&nd ed.: AddisoiwWesley, 1997, vol.
The Art of Computer Programming Series.

[2] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. F
Numerical Recipes in C (The Art of Scientific Computémg) ed.: CAMBRID
UNIVERSITY PRESS, 1992.

[38] TIOBE Software. (2010, August) TOIBE Software. [O
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

[4] HexRays. The IDA Pro Disassembler and Debugger. [Oriite)/www.hex-
rays.com/idapro/

[5] Boaz Barak and Shai Halevi, "An architecture for robust psemom
generation,” , 2005, http://www.cs.princeton.edu/~boaz/Papers/devrand.pdf.

[6] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall, "Cryptanalytic
on Pseudorandom Number Generatord,ecture Notes in Computer Scieneel.
1372, pp. 168188, 1998.

[7] M. Gude, "Concept for a HigPerformance Random Number Generator &hsr
Physical Random Noise," vol. 39, pp.-18D, 1985.

[8] G. B Agnew, "Random Source for Cryptographic SystemsAduances i
Cryptology EUROCRYPT '87 Proceedihg88, pp. 781.

[9] M. RichtermEin Rauschgenerator zur Gweinnung won gigeslen Zufallszahle
fur die stochastische Simulatioachen University of Technology, 1992, In Germ

[10] R.C. Fairchild, R.L. Mortenson, and K.B. Koulthart, "An LSI Random
Generator (RNG)," iAdvances in Cryptology: Proceedint@35, pp. 20230.

[11] Jon Postel, "Transmission control protocdhternet Engineering Task forceol.
RFC 793, September 1981.

[12] INTERNATIONAL TELECOMMUNICATION UNION (X.667), "Genera
registration of Universally Unique Identifiers (UUIDs) and theirasé&SN.1 obje
identifier components,” X.667, 2004.

[13] Tim Dierks and Christopher Allen, "The TLS protocol version 1.0," RFC 224¢

[14] R.L. Rivest, A. Shamir, and L. Adleman, "A Method for Obtaining Digital Sig
and PublieKey Cryptosystas,” Communications of the ACMol. 21 (2), pp. 12€.26,
1978.

[15] A. Menezes, P. van Oorschot, and S. VanstoHandbook of Applie
Cryptography. CRC Press, 1996.

[16] Shamir A., "On the generation of cryptographically strong pseaddom
sequences," , 1981, pp. 54560.

[17] Lenore Blum, Manuel Blum, and Michael Shub, "Comparison of two ps
random numbergenerators,” , New York, 1983, pp.781

[18] Michael Howard and David LeBland/riting Secure Code, Second Edit
Microsoft Pubishing, 2002.

[19] D. H. Lehmer, "Mathematical methods in largmale computing units,” ir2nd

Sympos. on Larg8cale Digital Calculating Machingambridge, MA, 1949, pp. k&
146.

91

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.hex-rays.com/idapro/
http://www.hex-rays.com/idapro/

[200 L' ecuyer Pierre, "Efficient and P
Communications of the ACMol. 31 Number 6, no. June 1988, 1988.

[21] Bruce SchneierApplied Cryptography, Second Edition: Protocols, Algorthm:
Source Code in:dohn Wiy & Sons, Inc., 1996.

[22] Marsaglia George, "A Current View of Random Number Generators,” , A
1984.

[23] Richard P. Brent, "Uniform Random Number Generators for Supercomput
Melbourne, 1992.

[24] Lewis T. G. and Payne W. H., "Generalizsedback Shift Register Pseudorant
Number Algorithm," vol. 20, pp. 45868, 1973.

[25] Matsumoto M. and Kurita Y., "Twisted GFSR generat?&é6 M Transactions ¢
Modeling and Computer Simulatiovol. 2, pp. 179494, 1992.

[26] M. Matsumoto and Y. Kurita, "Twisted GFSR generatorA@M Transactions «
Modeling and Computer Simulatiowol. 4, pp. 25466, 1994.

[27] M. Matsumoto and T. Nishimura, "Mersenne Twister: A -623ensionall
Equidistributed Uniform Pseud@andom Nurber Generator,”ACM Transctions or
Modeling and Computer Simulation (TOMA®SI) 8, pp. 30, 1998.

[28] National Institute of Standards and Technology, "NIST®0OIRecommendatic
for Random Number Generation Using Deterministic Random Bit Gens
(Revised)," NIST, NIST NIST-8D®007.

[29] FIPS, "DIGITAL SIGNATURE STANDARD (DSS)," FIR3,R0B0186

[30] National Institute of Standards and Technology, "FIPS PUB 197: Ad
Encryption Standard (AES)," FIPS PUB 197, 2001.

[31] Dan Shumow and Ferguson Niels. On the Possibility of a Back Door in tl
SP800 Dual Ec Prng. [Onlinétp://rump2007.cr.yp.to/15shumow.pdf

[32] National Institute of Standards and TechnolpgFIPS PUB 180 Secure has
standard," FIPS PUB 1801995.

[33] National Bureau of Standards, "FHP&.46: Data Encryption Standai
Washington D.Cc, FHP8b.46, 1977.

[34] Mihir Bellare, Shafi Goldwasser, and Daniele Micciancio, "'PsRaddom
Number Generation within Cryptographic Algorithms: the DSS Cas@dviances i
Cryptology Crypto 97 Proceeding$997.

[35] Peter Gutmann, "Software Generation of Practically Strong Random Numbe
In Proc. of 7th USENIX Security Sympqsiif88, An updated version appears
http://www.cypherpunks.to/~peter/06_random.pdf.

[36] Ernesto Guisado. Cryptographic Random Numbers. [Or
http://erngui.com/rng/index.html

[37] GEORGE MARSAGLIA, "RANNOMBERS FALL MAINLY IN THE PLANES,"

[38] George A Fishman and Louis R Ill Moore, "An exhaustive analysis of multif

congruential random number generators with modulus 24431 SIAM Journal ¢
Scientific and Statistical Computingl. 7, nol, pp. 2445, 1986.

[39] lan Goldberg and David Wagner, "Randomness and the Netscape Brol@s
Dobb's Journall996.

92

http://rump2007.cr.yp.to/15-shumow.pdf
http://erngui.com/rng/index.html

[40] Jennifer G. Steiner, Clifford Neuman, and Jeffrey I. Schiller, "Kerber:
authentication service for open network systems)"Hroc. winter Usenix conferen
Dallas, 1988.

[41] Nelson Minar, "Breakable session keys in Kerberos v4,” me#d
199602200828.BAA21074@nelson.santafe.edu, 1996.

[42] Zvi Gutterman and Dahlia Malkhi, "Hold Your Sessions: An Attack on Java-
Id Generation," , 2005.

[43] Apache Software Foundation (ASF). Tomcat Server.

[44] M. E. Hellman, "A cryptanalytic tirmeemory trade off," IEEE Trans. Infor
Theory pp. 401406, 1980.

[45] Wi et se Venema, “"Mur phy’ s Proeeadings ofdhe 6
Usenix Security Symposiuf996, p. 187.

[46] Brad Arkin et al. (1999, September) How we Learned to Cheat in Online P
Study in Software Security. [Onlir
http://www.cigital.com/papers/download/developer_gambling.pdf

[47] ISO/SEC, "Pascal,” 1ISO 7185 :1990, 1991.

[48] Top 500 Supercomputer Sites. (2010, June) Top 500 Supercomputet
[Online].http://top500.0rg/stats/list/35/osfam

[49] 2vi Gutterman, Benny Pinkas, and Tzachy Reinman, "Analysis of the Linux
Number Generator," , 2006.

[50] Ted Ts'o. random.c. [Onlinddttp://www.kernel.org
[51] Open WRT Platform. [Onlindittp://www.openwrt.org

[52] (2010) Operating Systems Market Share. [Onl
http://marketshare.hitslink.com/operatingsystemmarketshare.aspx?gprid=10

[53] Leo Dorrendorf, Zvi Gutterman, and Benny Pinkas, "Cryptanalysis of the W
Random Number Generator,” 2007.

[54] Gregg Keizer. (2007, November) Microsoft confirms that XP contains r¢
number generator bug. [Online
http://www.computerworld.com/s/article/9048438/Microsoft _confirms_that XP_c¢
ntains_random_number_generator_bug

[55] Microsoft. Microsoft Windows Homepage. [Onlir
http://www.microsoft.com/windows/

[56] Linux. Linux. [Onlinehttp://www.linux.org/

[57] Microsoft. Microsoft's CLR Overview. [Onlingltp://msdn.microsoft.com/en
us/library/ddk909ch.aspx

[58] GNU. GNU C Library. [Onlinep://www.gnu.org/software/libc/

[59] GNU. BSD Random Number Functions. [On
http://www .gnu.org/software/libc/manual/html_node/BSRandom.html

[60] GNU. SVID Random Number Function. [On
http://www.gnu.org/s/libc/manual/html_node/SVIERandom.html

[61] Microsot. rand_s API. [Online]. http://msdn.microsoft.com/en

us/library/sxtz2fa8(VS.80).aspx

93

http://www.cigital.com/papers/download/developer_gambling.pdf
http://top500.org/stats/list/35/osfam
http://www.kernel.org/
http://www.openwrt.org/
http://marketshare.hitslink.com/operating-system-market-share.aspx?qprid=10
http://www.computerworld.com/s/article/9048438/Microsoft_confirms_that_XP_contains_random_number_generator_bug
http://www.computerworld.com/s/article/9048438/Microsoft_confirms_that_XP_contains_random_number_generator_bug
http://www.microsoft.com/windows/
http://www.linux.org/
http://msdn.microsoft.com/en-us/library/ddk909ch.aspx
http://msdn.microsoft.com/en-us/library/ddk909ch.aspx
http://www.gnu.org/software/libc/
http://www.gnu.org/software/libc/manual/html_node/BSD-Random.html
http://www.gnu.org/s/libc/manual/html_node/SVID-Random.html
http://msdn.microsoft.com/en-us/library/sxtz2fa8(VS.80).aspx
http://msdn.microsoft.com/en-us/library/sxtz2fa8(VS.80).aspx

[62] llpo Vattulainen, T. Aldlissila, and K. Kankaala, "Physical Tests for Re
Numbersm Simulations," 1994.

[63] Wikipedia. C POSIX Library. [Onlihé://en.wikipedia.org/wiki/C _POSIX libra

[64] Microsoft. Microsoft C Ruitime Libraries. [Online
http://msdn.microsoft.com/erus/library/abx4dbyh(VS.80).aspx
[65] ISOI/IEC. Open Standards. [Online]. http://www.open-

std.org/jtc1/sc22/wgl4/www/standards.html#9899

[66] Wikipedia. ANSI C. [Onlinélip://en.wikipedia.orgiki/ANSI_C

[67] ANSI. ANSI C Rationale Document. [On
http://www.lysator.liu.se/c/rat/d10.html#410-2

[68] Joan B. Plumstead, "Inferring a Sequence Produced by a Linear Congry
1982.

[69] Microsoft. Security Enhancements in the CRT. [On
http://msdn.microsoft.com/erus/library/8ef0s5kh(v=VS.80).aspx

[70] Wikipedia. CryptGenRandom Using Rti@andom. [Online
http://en.wikipedia.org/wiki/CryptGenRandom#Using_RtlIGenRandom

[71] Microsoft. SecuritEnhanced Versions of CRT Functions. [On
http://msdn.microsoft.com/enus/library/wd3wzwts(v=VS.80).aspx

[72] Wikipedia. iOS. [Onlinehttp://en.wikipedia.org/wiki/IPhone _OS

[73] GNU. GLIBC PseuBandom Numbers API. [Onlir
http://www.gnu.org/s/libc/manual/html node/Pseudo 002dRandem
Numbers.html#Pseudo 002dRanddvumbers

[74] Klein Amit. (2008, February) PowerDNS Recursor DNS Cache Poisoning.
http://www.trusteer.com/list-context/publications/powerdngecursordns-cache
poisoning

[75] Wikipedia. System V Interface Definition. [Onlil
http://en.wikipedia.org/wiki/System_V_Interface Definition

[76] Sun (now Oracle). Oracle and Java Technologies. [O
http://www.oracle.com/us/technologies/java/index.html

[77] Jan P. Monsch. Iplosion. [Online
http://www.iplosion.com/papers/ruining_security with_java.util.r-andom_v1.0.pdf

[78] FIPS, Security Requirements for Cryptograpkiodules, FIPS 148 2001
http://csrc.nist.gov/publications/fips/fips14@/fips1402.pdf.

[79] D. Eastlake 3rd and S. D. Crocker and J. Schiller, "Randomness Recomme
for Security," RFC 1750, 1994.

[80] Sun. Java Cryptography Architecture. [Onli
http://download.oracle.com/javase/1.4.2/docs/quide/security/CryptoSpec.html
[81] Microsoft. Cryptographic Service Providers. [Onl

http://msdn.microsoft.com/enus/library/aa380245(VS.85).aspx

[82] Tzachy Reinman and Malkhi Dahlia. (2005) On Linux Random Number Ge
Thesis Dissertation. [Onlinejww.cs.huji.ac.il/~reinman/thesis.pdf

[83] RSA Laboratories, "PKCS #11: Cryptographic Token Interface Standard,".

94

http://en.wikipedia.org/wiki/C_POSIX_library
http://msdn.microsoft.com/en-us/library/abx4dbyh(VS.80).aspx
http://www.open-std.org/jtc1/sc22/wg14/www/standards.html#9899
http://www.open-std.org/jtc1/sc22/wg14/www/standards.html#9899
http://en.wikipedia.org/wiki/ANSI_C
http://www.lysator.liu.se/c/rat/d10.html#4-10-2
http://msdn.microsoft.com/en-us/library/8ef0s5kh(v=VS.80).aspx
http://en.wikipedia.org/wiki/CryptGenRandom#Using_RtlGenRandom
http://msdn.microsoft.com/en-us/library/wd3wzwts(v=VS.80).aspx
http://en.wikipedia.org/wiki/IPhone_OS
http://www.gnu.org/s/libc/manual/html_node/Pseudo_002dRandom-Numbers.html#Pseudo_002dRandom-Numbers
http://www.gnu.org/s/libc/manual/html_node/Pseudo_002dRandom-Numbers.html#Pseudo_002dRandom-Numbers
http://www.trusteer.com/list-context/publications/powerdns-recursor-dns-cache-poisoning
http://www.trusteer.com/list-context/publications/powerdns-recursor-dns-cache-poisoning
http://en.wikipedia.org/wiki/System_V_Interface_Definition
http://www.oracle.com/us/technologies/java/index.html
http://www.iplosion.com/papers/ruining_security_with_java.util.random_v1.0.pdf
http://download.oracle.com/javase/1.4.2/docs/guide/security/CryptoSpec.html
http://msdn.microsoft.com/en-us/library/aa380245(VS.85).aspx
www.cs.huji.ac.il/~reinman/thesis.pdf

[84] Brian Warner. EGD: The Entropy Gathering Daemon. [Ol
http://eqd.sourceforge.net/

[85] E. H. McKinney, "Generalized Birthday Problemtherican Mathematic:
Monthly, pp. 385387, 1966.

[86] X.Wang, Y.L.Yin, and and H. Yu, "Finding Collisions in the FjlI' SB@05.

[87] Microsoft, "Common Languadefrastructure (CLI)," ECMA Standard E€335..

[88] Microsoft. (2006, March) Shared Source Common Language Infrastructt
Release. [Online
http://www.microsoft.com/downloads/en/details.aspx?Family|D=8c09felff26-
4555ae173121b4f51d4d&displaylang=en

[89] redgate..NET Reflector- redgate products. [Online]. http://www.red-
gate.com/products/reflector/

[90] Novell. mono. [Onlinehttp://www.mono-project.com/Main_Page

[91] Wikipedia. The Golden Ratio. [Onlinkdtp://en.wikipedia.org/wiki/Golden_ratio

[92] David Wright. Random Numbers. [Onlir
http://www.shadlen.org/ichbin/rardom/generators.htm#knuth

[93] Microsoft. (2007, September) MSDN (NET Matters). [On
http://msdn.microsoft.com/enus/magazine/cc163367.aspx

[94] Microsoft. Mapping Algorithm Names to Cryptography Classes. [Ol
http://msdn.microsoft.com/enus/library/693aff9y(v=VS.90).aspx

[95] Michael Howard. (2005, January) Crygtaphically Secure Random number
Windows without using CryptoAPI. [Onlir
http://blogs.msdn.com/b/michael _howard/archive/2005/01/14/353379.aspx

[96] Microsoft. (20D, July) CryptGenRandom Function APl Documentation. [Ol
http://msdn.microsoft.com/enus/library/aa379942(VS.85).aspx

[97] PHP. PHP. [Onlindittp://www.php.net/
[98] Netcraft. PHP Usage. [Onlingitp://www.php.net/usage.php
[99] Apache. Apache. [Onlindttp://www.apache.org/

[100] PHP. PHP Writing Functions Documentation. [On
http://www.php.net/manual/en/internals2.funcs.php

[101] Ingo Molnar. (2020, September) lockless, scalable get pid(). [O
http://lwn.net/Articles/10181/

[102] corbet. (2002, September) Solving the process ID allocation problem. [C
http://lwn.net/Articles/10238/

[103] corbet. (2002, September) The get_pid() function. [Onl
http://lwn.net/Articles/10246/

[104] Redhat. RedHat Linux. [Onlinkitp://www.redhat.com/
[105] Wikipedia. HTTP Secure. [Onlirg}p://en.wikipedia.org/wiki/HTTP_Secure

[106] Bruce Schneier. (2010, March) Sfdeannel Attacks on Encrypted Web Trg
[Online]. http://www.schneier.com/blog/archives/2010/03/sidehannel_at.html

[107] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang;l8rde| Leaks
Web Applications: a Reality Today, a Challenge Tawgl, Oakland, 2010.

95

http://egd.sourceforge.net/
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=8c09fd61-3f26-4555-ae17-3121b4f51d4d&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=8c09fd61-3f26-4555-ae17-3121b4f51d4d&displaylang=en
http://www.red-gate.com/products/reflector/
http://www.red-gate.com/products/reflector/
http://www.mono-project.com/Main_Page
http://en.wikipedia.org/wiki/Golden_ratio
http://www.shadlen.org/ichbin/random/generators.htm#knuth
http://msdn.microsoft.com/en-us/magazine/cc163367.aspx
http://msdn.microsoft.com/en-us/library/693aff9y(v=VS.90).aspx
http://blogs.msdn.com/b/michael_howard/archive/2005/01/14/353379.aspx
http://msdn.microsoft.com/en-us/library/aa379942(VS.85).aspx
http://www.php.net/
http://www.php.net/usage.php
http://www.apache.org/
http://www.php.net/manual/en/internals2.funcs.php
http://lwn.net/Articles/10181/
http://lwn.net/Articles/10238/
http://lwn.net/Articles/10246/
http://www.redhat.com/
http://en.wikipedia.org/wiki/HTTP_Secure
http://www.schneier.com/blog/archives/2010/03/side-channel_at.html

[108] Firewall.cx. Firewall.cx, the site for Networking Professionals. [Or
http://www.firewall.cx/dns-queryformat.php

[109] J. Kohl and C. Neuman, "The Kerberosvoek authentication service (V5)," k
1510, 1993.

[110] B. Callaghan, B. Pawlowski, and P. Staubach, "NFS version 3 |
specification," RFC 1813, 1995.

96

http://www.firewall.cx/dns-query-format.php

k.

T —a T T

1

LR e

1

V44 + N\ \\

X o~ Fdox 440X DX b A s T xS L Al e] X X X%y
X . Foeod . XY L~ I Iox ~|1 s 191« L X « X q x
Vo ox o :x-|,,>v ;:x,,-|~A s "] x :x-|,,)v P X
XXA D o :'x1~;xl_l .|x>q¥tv,.,)“ ;,.x-|-|,,) L. -||_|_x'|v Lo F L
¥ ox_ fossdLoox1 s R I B 1. x s v LL Flde -«

. X 941 s F 1., XY [« X =] x 1, -¥yx1 4. <5
XA X v kA 1o x 1, Lo 4 x4 s .
oow S P Ox] S T ForoX o X Pl 4 XY s L

[~XV'IVX Yy « X XX, -,PL'1'L"I.SX]-V‘|LPL><X]‘;XL~X

CPHP X TS s oso Lox 044 b b L x oy L SGL X TS i x 4%,
PHP > v 4 44 ws v 4L wX b s I KO X%

97

" "Cloudsharg

awnnnwny | MYININ
o

* o

+*
*
MINAX D M (*MNNN1an

x4 x 1
LT RN

1M
R

. X S . N
S IR T I B

R EREE N RIS
(Z-|,,><As
2 011 - _

98

	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Contributions
	1.2 Structure and Outline

	2 Pseudo Random Number Generators
	2.1 The Importance of Random Numbers
	2.2 What is a Good (Pseudo) Random Number Generator?
	2.3 Theory vs. Practice
	2.4 Popular PRNGs Review
	2.4.1 Linear Congruential Generator (LCG)
	2.4.2 Multiplicative Congruential Generator (MRG/MCG/MLCG)
	2.4.3 Combined MCG (CMCG/CMLCG)
	2.4.4 LFSR (Linear Feedback Shift Register)
	2.4.5 Lagged Fibonacci Pseudo Random Generators (LFG)
	2.4.6 Generalized Feedback Shift Register (GFSR)
	2.4.7 Twisted Generalized Feedback Shift Register (TGFSR)
	2.4.8 Mersenne Twister
	2.4.9 Blum Blum Shub (BBS)
	2.4.10 PRNGs in Standards
	2.4.10.1 NIST 800-90
	2.4.10.2 FIPS-186 DSS

	3 Related Work
	3.1 The RANDU PRNG
	3.2 Netscape SSL Attack
	3.3 Predictable Session Keys in Kerberos V4
	3.4 Attack on Apache Tomcat’s Session ID Generation
	3.5 Identical NFS File Handles
	3.6 Online Poker Exploit
	3.7 Linux Random Number Generator (LRNG) Analysis
	3.8 Windows Random Number Generator (WRNG) Analysis

	4 Analysis Methods
	4.1 Notations/Jargon
	4.2 Assumptions
	4.3 Common Analysis Structure
	4.4 Attack Vectors and Attack Assumptions

	5 C
	5.1 Introduction
	5.2 Microsoft CRT (MSVCRT) Generators
	5.2.1 (ANSI-C) C Standard Built-in Generators (rand() family)
	5.2.1.1 Design Space
	5.2.1.2 Under the Hood
	5.2.1.3 Properties Analysis
	5.2.1.3.1 Pseudo-randomness
	5.2.1.3.2 Backward Security
	5.2.1.3.3 Forward Security
	5.2.1.3.4 Default Seed Weakness

	5.2.2 rand_s()
	5.2.2.1 Design Space
	5.2.2.2 Under the Hood

	5.3 *NIX glibc Generators
	5.3.1 Introduction
	5.3.2 (ANSI-C) C Standard Built-in Generators (rand() family)
	5.3.2.1 Design Space

	5.4 BSD C Generators (random() family)
	5.4.1 Introduction
	5.4.2 Design Space
	5.4.3 G0: LCG
	5.4.3.1 Under the Hood
	5.4.3.2 Properties Analysis
	5.4.3.2.1 Pseudo-randomness
	5.4.3.2.2 Backward Security
	5.4.3.2.3 Forward Security

	5.4.4 G1-G4: AFG
	5.4.4.1 Under the Hood
	5.4.4.2 Properties Analysis
	5.4.4.2.1 Pseudo-randomness
	5.4.4.2.2 Backward Security
	5.4.4.2.3 Forward Security

	5.4.4.3 Seed Weakness

	5.5 SVID C Generators (rand48() family)
	5.5.1 Introduction
	5.5.2 Design Space
	5.5.3 Under the Hood
	5.5.4 Properties Analysis

	6 Java
	6.1 Introduction
	6.2 Math.Random
	6.2.1 Design Space

	6.3 java.util.Random
	6.3.1 Design Space
	6.3.2 Under the Hood
	6.3.3 Properties Analysis
	6.3.3.1 Pseudo-randomness
	6.3.3.2 Backward Security
	6.3.3.3 Forward Security
	6.3.3.4 Default Seed Weakness

	6.4 java.security.SecureRandom
	6.4.1 Introduction
	6.4.2 Design Space
	6.4.3 P1: MSCapi PRNG
	6.4.3.1 Design Space
	6.4.3.2 Under the Hood and Properties Analysis

	6.4.4 P2: nativePRNG
	6.4.4.1 Design Space
	6.4.4.2 Under The Hood
	6.4.4.3 Properties Analysis
	6.4.4.3.1 Pseudo-randomness
	6.4.4.3.2 Backwards Security
	6.4.4.3.3 Forward Security
	6.4.4.3.4 Seed Security

	6.4.5 P4: P11SecureRandom – PKCS-11 implementation
	6.4.6 P3: Sun’s default PRNG implementation: SecureRandom
	6.4.6.1 Design Space
	6.4.6.2 Under the Hood
	6.4.6.3 Properties Analysis
	6.4.6.3.1 Pseudo-randomness
	6.4.6.3.2 Backward Security
	6.4.6.3.3 Forward Security
	6.4.6.3.4 Default Seed Security

	7 C# (.NET)
	7.1 Introduction
	7.2 System.Random
	7.2.1 Design Space
	7.2.2 Under the Hood
	7.2.3 Properties Analysis
	7.2.3.1 Pseudo-randomness
	7.2.3.2 Backward Security
	7.2.3.3 Forward Security
	7.2.3.4 Seed Weakness

	7.3 System.Security.Cryptography.RandomNumberGenerator
	7.3.1 Design Space
	7.3.2 Under the Hood
	7.3.3 Properties Analysis
	7.3.3.1 Pseudo-randomness
	7.3.3.2 Backward Security
	7.3.3.3 Forward Security

	8 PHP
	8.1 Introduction
	8.2 lcg_value() PRNG
	8.2.1 Design Space
	8.2.2 Under the Hood
	8.2.3 Properties Analysis
	8.2.3.1 Pseudo-randomness
	8.2.3.2 Backward Security
	8.2.3.3 Forward Security
	8.2.3.4 Default Seed Weakness

	8.3 rand() PRNG
	8.3.1 Design Space
	8.3.2 Under the Hood
	8.3.3 Properties Analysis
	8.3.3.1 Pseudo-randomness
	8.3.3.2 Default Seed Analysis

	9 Summary and Conclusions
	10 Appendix A: Application Attack: Attack on PHP’s Session ID Allocation
	10.1 Introduction
	10.2 Session ID Allocation Algorithm
	10.3 Extracting the state of the generator
	10.4 Mounting the Session Hijacking Attack

	11 Appendix B: Code Snippets
	11.1 Java
	11.1.1 Java: SecureRandom
	11.1.1.1 perm_table

	11.2 .NET
	11.2.1 System.Random (Random.cs)
	11.2.2 System.Security.Cryptography. RNGCryptoServiceProvider (rngcryptoserviceprovider.cs)
	11.2.2.1 Microsoft.Win32 (win32natives.cs)

	11.2.3 win32pal.c

	11.3 *NIX C
	11.3.1 BSD
	11.3.2 SVID

	12 Appendix C: Configuration Files
	12.1 java.security default security file configuration

	13 Bibliography

