Computers and machines enable us to shape almost every aspect of reality. However, the most central part of our reality - our body and the biology making it - remains an unchartered realm, which we still cannot computerize or mechanize. Recently, we used computer-aided design of DNA folding to fabricate nanoscale robots that can be programmed to carry out autonomous tasks in biological systems, communicate with cells, and manipulate their behavior. These nano-robots can also be programmed to exhibit collective behaviors and decentralized logic, enabling complex tasks such as emulating multi-bit digital computers and sharing resources in a living organism. We are now studying how such basic tasks like searching, counting, and delivering cargo could be programmed at the molecular scale. By defining and testing new "molecular scripts" enabling more elaborate features, we could expand our ability to heal, regenerate, and tune our biology to more harmonic outcomes.